Skip to main content

This could be the reason you upgrade your GPU

The RTX 4080 in a running test bench.
Jacob Roach / Digital Trends

Now more than ever, the best graphics cards aren’t defined by their raw performance alone — they’re defined by their features. Nvidia has set the stage with DLSS, which now encompasses upscaling, frame generation, and a ray tracing denoiser, and AMD is hot on Nvidia’s heels with FSR 3. But what will define the next generation of graphics cards?

It’s no secret that features like DLSS 3 and FSR 3 are a key factor when buying a graphics card in 2024, and I suspect AMD and Nvidia are privy to that trend. We already have a taste of what could come in the next generation of GPUs from Nvidia, AMD, and even Intel, and it could make a big difference in PC gaming. It’s called neural texture compression.

Recommended Videos

Let’s start with texture compression

An opal material in Unreal Engine 5.
Epic Games

Before we can get to neural texture compression, we have to talk about what texture compression is in the first place. Like any data compression, texture compression reduces the size of textures by compressing the data, but it has a few unique elements compared to, for example, an image compression technique like JPEG. Texture compression trades visual quality for speed, while static compression techniques often optimize for quality over speed.

Get your weekly teardown of the tech behind PC gaming
Check your inbox!

This is important because game textures stay compressed until they’re rendered. They’re compressed in storage, compressed in memory and VRAM, and only decompressed when they’re actually rendered. Texture compression also needs to be optimized for random access, with rendering tapping different parts of the memory depending on the textures it needs at the time.

That’s done with block compression today, which basically takes a 4×4 block of pixels and encodes them down, hence the “block” name. Block compression has been around for decades. There are different formats — as well as techniques like Adaptive Scalable Texture Compression (ASTC) for mobile devices — but the core concept has stayed the same.

A weapon texture in Redfall.
Digital Trends

Here’s the issue — textures aren’t getting any smaller. Highly detailed game worlds call for highly detailed textures, putting more strain on your hardware to decode those textures, as well as on your memory and VRAM. We’ve seen higher memory requirements for games like Returnal and Hogwarts Legacy, and we’ve seen 8GB graphics cards struggle to keep up in games like Halo Infinite and Redfall. There’s also supercompression with tools like Oodle Texture — don’t confuse that with data compression via tools like Oodle Kraken — which compresses the already compressed textures for smaller download sizes. That needs to be decompressed by the CPU, putting more strain on your hardware.

The solution seems to be to throw AI at the problem, which is something Nvidia and AMD are both exploring right now, and it just might be the reason you buy a new graphics card.

The neural difference

Nvidia's research for neural texture compression.
Nvidia

In August last year, Nvidia introduced Neural Texture Compression (NTC) at Siggraph. The technique is able to store 16 times as many texels as typical block compression, resulting in a texture that’s four times larger in resolution. That’s not impressive on its own, but this part is: “Our method allows for on-demand, real-time decompression with random access similar to block texture compression on GPUs.”

NTC uses a small neural network to decompress these textures directly on the GPU, and in a time window that’s competitive with block compression. As the abstract says, “this extends our compression benefits all the way from disk storage to memory.”

Nvidia isn’t the only one. AMD just revealed that it will discuss neural block texture compression at this year’s Siggraph with a research paper of its own. Intel has addressed the problem, too, specifically calling out VRAM limitations when it introduced an AI-driven level of detail (LoD) technique for 3D objects.

Although these are just research papers, they’re all getting at neural rendering. Given how AI is sweeping the world of computing, it’s hardly surprising that AMD, Nvidia, and Intel are all looking for the next frontier in neural rendering. If you need more convincing, here’s what Nvidia CEO Jensen Huang had to say on the matter in a recent Q&A: “AI for gaming — we already use it for neural graphics, and we can generate pixels based off of few input pixels. We also generate frames between frames — not interpolation, but generation. In the future we’ll even generate textures and objects, and the objects can be of lower quality and we can make them look better.”

A rising tide

The Gigabyte GeForce RTX 4070 Ti Super AI Top graphics card showcased at Computex 2024.
Kunal Khullar / Digital Trends

At the moment, it’s impossible to say how neural texture compression will show up. It could be relegated to middleware, stuffed into a logo as your start up your game, and never given a second thought. It might never manifest as a feature that shows up in games, especially if there’s a better use for it elsewhere. Or it could be one of the key features that stands out in the next generation of graphics cards.

I’m not saying it will be, but clearly AMD, Nvidia, and Intel all recognize something here. There’s some balance between install size, memory demands, and the final quality of textures in a game, and neural texture compression seems like the key to give developers more room to play with. Maybe that leads to more-detailed worlds, or maybe there’s a slight bump in detail with much less demand on memory. That’s up to developers to balance.

There’s a clear benefit, but the requirements remain a mystery. So far, AMD hasn’t presented its research, and Nvidia’s research is based on the performance of an RTX 4090. In an ideal world, neural texture compression — or more accurately, neural decompression — would be a developer-facing feature that works on a wide range of hardware. If it’s as significant as some of these research papers suggest, though, it might be the next frontier for PC gaming.

I suspect this isn’t the last we’ve heard of it, at least. We’re standing on the edge of a new generation of graphics cards, from Nvidia’s RTX 50-series to AMD’s RX 8000 GPUs to Intel Battlemage. As we start to learn about these GPUs, I have a hard time imagining neural texture compression won’t be part of the conversation.

Jacob Roach
Lead Reporter, PC Hardware
Jacob Roach is the lead reporter for PC hardware at Digital Trends. In addition to covering the latest PC components, from…
Don’t get your hopes up for next-gen GPUs just yet
Two RTX 4060 graphics cards stacked on top of each other.

The list of the best graphics cards will probably look a lot different in a month's time. We're standing on the edge of the next generation of graphics cards, and it looks like Nvidia, AMD, and Intel all have big plans in store. At least from the conversations I've had, all eyes are on what the next generation of graphics cards has to offer before making an upgrade decision.

That's generally good advice -- if new hardware is about to launch, there isn't much reason to spend up for last-gen components. You'll likely pay a higher price, and you could be missing out on some big performance gains. This generation, however, it's important to temper expectations. Although the next generation of graphics cards is exciting, it probably won't be a reality for most gamers anytime soon.
Always start with the flagships

Read more
Final Fantasy 7 Rebirth proves, once again, that 8GB GPUs are on their way out
Final Fantasy VII Rebirth running on the Steam Deck.

Final Fantasy 7 Rebirth is headed to PC in a few short weeks, and ahead of the release, Square Enix has released the PC requirements for the game. There are a couple of interesting specs, but one stands out in particular. Even some of the best graphics cards, particularly those packing 8GB of VRAM, might struggle to run the game.

You can see the full system requirements below. At the bottom of the list for each of the configurations, there's a note about VRAM capacity. For 1080p and 1440p, the requirements call for a GPU with at least 12GB of video memory when used with a 4K monitor, while at proper 4K, the requirements call for a GPU with 16GB of memory.

Read more
We might see a new version of DLSS next month
A hand grabbing MSI's RTX 4090 Suprim X.

As the year comes to a close, we're hearing more about what Nvidia might have in store at CES next month. Not only is the company rumored to launch its RTX 50-series GPUs, which could take Nvidia's best graphics cards to the next level, it could also introduce new software features. At least, that's what Nvidia board partner Inno3D is suggesting.

The company, which is an exclusive Nvidia board partner, posted a press release detailing what it will cover at CES next month. In addition to its various GPU models, including the Frostbite range with a "new liquid cooling solution" and the SFF range for small form factor PCs, Inno3D highlighted an AI feature set including "advanced DLSS technology," "improved AI-driven upscaling," and "neural rendering capabilities."

Read more