Skip to main content

Qualcomm’s self-driving car made me never want to touch a steering wheel again

Of all the cars I saw at CES 2020, I was most impressed by the Lincoln MKZ I rode in — and I didn’t even get to touch the steering wheel. Matter of fact, I didn’t have to: The car itself did all of the steering.

Recommended Videos

A couple of days earlier at the giant Consumer Electronics Show, Qualcomm announced a new platform for self-driving cars called Snapdragon Ride — and to showcase its powers, Qualcomm gave me a ride in an MKZ that had been tricked out with all the sensors and chips necessary to use the new platform. The platform, Snapdragon Ride, is a handful of chips and a software stack that can fit into box no bigger than your backpack and can tie all of those systems together: Radar of all ranges (and maybe even high-resolution radar), a CV2X communication system, and front and rear cameras, connected via software that knows where the car is, where it should turn, and what’s happening on the roadway ahead.

“Qualcomm has been working on autonomous driving for many years,” Anshuman Saxena, director of product management at Qualcomm Technologies, who works on the Automotive Driver Assistance Solutions team, told Digital Trends. “We’ve spent years to understand the whole problem, attack it, and put it all together into an autonomous solution.”

My self-driving test drive

The system marks a big pivot for Qualcomm, which has focused on supplying the chips — not the total package. And so to prove its platform, the chip giant took me for a spin. While at CES, I got behind the wheel of Faraday Future’s $200,000 electric sportscar but my ride in Qualcomm’s Lincoln MKZ was more exciting.

Qualcomm's self-driving Lincoln MKZ at CES 2020
Qualcomm’s self-driving Lincoln MKZ Jeremy Kaplan/Digital Trends

Two years ago at CES, I took a drive in a self-driving vehicle from Aptiv and ridesharing company Lyft. It was the best kind of boring: The car responded exactly as one would expect, which is to say, it didn’t stall out in the middle of the road, it didn’t try to drive into a pond or up a tree, and it felt just like any other ride I’ve been in.

That said, it was just a block or two on the Las Vegas Strip. Qualcomm took me on the highway.

In highway driving, the stakes seem higher: The cars move faster, and there’s lots more of them. Yet it’s simpler in lots of ways for a computer to master. Cars go straight, unless they’re changing lanes, and there’s very little navigation really required, beyond entry and exit ramps. So to prove its capabilities, we did all of the complex stuff: We drove on and off ramps at variable speeds, merged into a three-lane highway, navigated highway interchanges, dodged 18-wheelers.

When the handler determined it was safe, he pushed a button, signaling the car that it was OK to make the move.

It was both thrilling and boring, as my first experience had been. The car handled every situation with aplomb, slowing up and speeding down when necessary, finding appropriate space in adjacent lanes, and switching between them easily. A few things stuck out: For one, the car doesn’t simply detect the speed limit and then attempt to drive it. Instead, Qualcomm’s Ride uses the speed and activity of nearby cars, along with the speed limit to determine, an “appropriate” speed. You wouldn’t blow by a line of stopped cars simply because the speed limit allows you to, and Ride won’t either.

In addition, the car wasn’t set to switch lanes fully on its own; instead, the system displayed a map showing a green band in a nearby lane — the target zone — and alerted our human handler that it wanted to switch. When he determined that it was safe, he pushed a button, signaling the car that it was OK to make the move. This seemed like a prudent safety feature as the system is being tested out, but would be annoying for anyone actually driving a car with Ride.

Big processing power, small package

Qualcomm's trunk-based Snapdragon Ride unit at CES 2020
Qualcomm’s trunk-based Snapdragon Ride unit Jeremy Kaplan/Digital Trends

That Ride solution itself is installed in the trunk of the MKZ. A tiny box, it leaves plenty of room for actual luggage.

In other self-driving demos, the computational power required to drive a car without crashing has essentially filled the luggage compartment. Qualcomm had fitted an array of sensors onto the car, including the radar and video cameras mentioned earlier. There’s no lidar, however: Qualcomm told me such laser-based positioning systems are still prohibitively expensive, despite the multitude of companies aiming to build more affordable solid-state systems.

Close-up of Qualcomm's trunk-based Snapdragon Ride unit at CES 2020
Jeremy Kaplan/Digital Trends

Buttons on the steering wheel had been repurposed to enable and disable the auto drive; no system is good enough to completely drive a car at present, and no state laws allow for such control.

But tests? That’s another story.

Qualcomm told me it has been testing the system in California for years, and has racked up thousands of autonomous miles in the process, as have the dozens of other tech companies looking to build self-driving cars of the future. Who’ll get there first? It’s anyone’s game right now.

Jeremy Kaplan
As Editor in Chief, Jeremy Kaplan transformed Digital Trends from a niche publisher into one of the fastest growing…
It looks like the end of the road for Cruise robotaxis
A Cruise autonomous car.

Autonomous-driving operations at Cruise look certain to end after its main backer, General Motors (GM), said it will stop funding the initiative.

GM, which has owned about 90% of Cruise since 2016, announced the decision in a statement shared on Tuesday. It follows a challenging period for Cruise after one of its autonomous cars ran over a woman after she was knocked into its path by a human-driven car in San Francisco in October 2023. The incident led to California regulators suspending Cruise's license to test its driverless cars on the state's streets, a decision that prompted Cruise to pause operations in other locations where it operated. It restarted low-level testing in Arizona in May 2024.

Read more
Hyundai Ioniq 9 vs. Kia EV9: Electric SUV sisters battle it out
Hyundai Ioniq 9 driving

The long-awaited Hyundai Ioniq 9 is finally on its way. Hyundai has taken the wraps off a production-ready version of the electric SUV, showing a modern vehicle that could well be the electric SUV to beat when it finally rolls out to the public. But it will have to contend with Hyundai’s sister company in order to truly gain the title of best electric SUV in its price range. The Kia EV9 has been a go-to option for a few years now.

But is one of these SUVs actually better, or are they just different? We put the Hyundai Ioniq 9 and the Kia EV9 head to head to find out.
Design
There are some similarities in the designs of the Hyundai Ioniq 9 and the Kia EV9, but they also look a little different. First, the similarities. Both vehicles are clearly SUVs, with larger blocky shapes. But, while the Kia EV9 has straight lines and sharper angles, the Ioniq 9 is a little curvier, with a rounded roofline and sculpted curves in the side panels.

Read more
Find Ford gifts for everyone on your holiday list, no really
Ford Accessories used while camping for holiday gifts

When you're shopping for holiday gifts, auto and Ford accessories probably don't cross your mind, at least not initially. Unless, of course, you're planning some gift ideas for the car enthusiast you know. But actually, Ford has a lot of different gift options even for those who aren't big into cars and vehicles. I know, it's an odd proposal but hear me out. From electronics and exterior accessories to truck bed augments, interior gear, and even outdoor-friendly gear -- like for camping -- Ford has a ton of options. Just to provide some examples, first aid safety kits, truck bed camping tents, portable fridges, pet-friendly seat mats, even dashcams, keyless entry systems, and beyond.

You never know, you could find the perfect gift in Ford's accessories lineup.
Shop Now

Read more