Skip to main content

Gory but good: Company plans virtual cadaver software

Dead bodies are in short supply, a fact that might surprise you unless you’ve been through medical school or dissected a corpse. The medical cadaver market is has obvious challenges: Not everyone wants to donate their body to be sliced, carved, drilled, tagged, and documented before finally left to rest in peace, after all.

Stiffs are also expensive to care for—they have to be refrigerated, which requires special equipment and trained staff. Heap on a little bad publicity about the organ-donor trade and you’ve got an environment Dr. Frankenstein would find a challenge.

Recommended Videos

So to solve the shortage of real dead folks, anatomists decided to create virtual ones.

An early pioneer of such virtual simulation was Norman Eizenberg, now an associate professor at the Department of Anatomy and Developmental Biology at Monash University in Australia. Over 20 years ago, he began collecting dissection data and storing it in an electronic form. That resulted in the creation of An@omedia’s virtual dissection software, which tremendously sped up the traditional process of learning human anatomy.

According to Eizenberg, the ratio of students to cadavers at his school is 80 to one, and slicing up a stiff is a slow meticulous process.

“You can’t just take a knife and fork and start cutting. You need to clear away fat, clear away fibers—all the tissues that hold us together.”

“You can’t just take a knife and fork and start cutting,” he told Digital Trends. “You need to make the dissections on the cadaver and clear away fat, clear away fibers—all the tissues that hold us together.” In a regular medical school setting it would take a student several days to accomplish what takes them a few clicks on a computer—each screen on Anatomedia represents a week worth of dissection. “On the screen it would take seconds to go to the next level,” Eizenberg says.

And that’s just the start; others want to push it even further. Robert Rice is a former NASA consultant who had built virtual astronauts for the agency and holds a Ph.D. in anatomy, while Peter Moon is the CEO of Baltech, a sensing and simulation technology company in Australia. They want to create a 3-D virtual human whose anatomy the students will be able to not only see but actually feel. And they’re not talking about a plastic imitation body made from synthetic tissues. They’re talking about a haptic, computerized human model the aspiring medics will be able to slice away on a computer screen while experiencing the sensation of cutting through the skin, pushing away fat and uncovering blood vessels. Moon calls is “putting technologies and innovation together to create a new norm.”

How does one build a tactile experience for dissecting a human body on a flat piece of glass?

The idea may sound far out, but each and every one of us is already using haptic electronic devices—the touchscreens on our smartphones and tablets that vibrate when we type a phone number or text a friend. That glass can respond to your taps only in a simple way—it can’t convey the flexibility or density of what you’re touching. But other, more advanced and sophisticated haptic devices can do that, and they already exist. Such devices can create the sense of touch by applying forces, vibrations or motions to their user. This mechanical stimulation helps create haptic virtual objects (HVOs) in a computer simulation.

Image used with permission by copyright holder

With the help of the tactile device as an intermediary, the users can manipulate HVOs on the screen while experiencing them as if they’re real. The concept is similar to the flight simulator a student pilot may use, where simple controls such as a joystick let her fly a virtual plane. The haptic human will be far more sophisticated, allowing student doctors to perform virtual dissections and surgeries.

“We’ll offer multi-touch, both-hands haptics which invokes the remarkable human sense of touch, sensitivity and meaning,” Rice says.

He has already laid out a roadmap to the haptic human. Anatomedia has the database of photos and scans depicting various body parts, bones, muscles and tissues. Using a haptic programming language such as H3DAPI—an open source software development platform—programmers can assign tactile qualities to the Anatomedia objects and make them respond to the movements of the student’s virtual scalpel just like they would in a real life. Such tactile qualities can be stiffness, deformability or various textures.

“You will feel the texture of skin, the firmness of an athletic muscle or the flabbiness of belly fat, the rigidity of your bony elbow or the pulsatile flow of blood at your wrist pulse point,” says Rice. All of the physical properties that exist in the world are built into the haptic programming language.

Aspiring medics will be able to slice away on a computer screen while experiencing the sensation of cutting through the skin, pushing away fat and uncovering blood vessels.

The computerized version of a patient can also take a basic anatomy lessons to the next level and portray how organs looks and feel when they’re damaged—the software would presents fractured bones, swollen muscles or grown tumors in a visual and tactile way. That means touching a bicep in an operating room would feel different than touching it in an autopsy room because the haptic programming language allows for that. “Our virtual anatomy becomes a unique virtual patient available for the ‘laying on of hands’ to detect and diagnose,” Rice says.

Rice and Moon titled their virtual human software Interactive Human Anatomy Visualization Instructional Technology—or simply IHAVIT.

So when can we expect the computer cadavers to replace the real ones, making the anatomy labs obsolete? Once the project is funded, says Rice, it would take about three to four years to program such virtual human. But the task requires a significant investment—more than a typical IndieGoGo campaign can amass. “If we do the human arm as a proof of concept,” Rice says, “we’re looking for a budget of three quarters of a million dollars and we would deliver it in 12 months.”

To build the rest would take 36 to 48 months, Rice estimates, and would cost $15 million as a ballpark figure — with a state-of-the-art version adding up to $24 million. If it sounds like a lot, dig this: to run a mid-size cadaver lab costs a medical school about $3 to $4 million a year. If a handful of medical schools pitch in for the idea, in a few years they’ll be saving those millions. And they would no longer have to deal with the dead-people problems such as shipping, preserving, returning and cremating. “It would probably reduce the overall cost of medical education,” Rice says.

But the team yet has to find the investor to back the project—that would take someone like Elon Musk, Bill Gates, Mark Cuban or Mark Zuckerberg, Rice says. “The individual needs to be a champion of our opportunity to integrate advanced technology with traditional healthcare,” he says. “We need to touch the mind and heart of an investor inspired to support this opportunity.”

Lina Zeldovich
Former Digital Trends Contributor
Lina Zeldovich lives in New York and writes about science, health, food and ecology. She has contributed to Newsweek…
What happened to Amazon’s inaugural Project Kuiper launch?
Official Imagery for Amazon Project Kuiper.

Amazon is aiming to take on SpaceX’s Starlink internet service using thousands of its own Project Kuiper satellites in low-Earth orbit.

The first Project Kuiper satellites were suppsoed to launch aboard a United Launch Alliance (ULA) Atlas V rocket from Cape Canaveral in Florida on April 9, but rough weather conditions forced the mission team to scrub the planned liftoff.

Read more
EVs top gas cars in German reliability report — but one weak spot won’t quit
future electric cars 2021 volkswagen id4 official 32

Electric vehicles are quietly crushing old stereotypes about being delicate or unreliable, and the data now backs it up in a big way. According to Germany’s ADAC — Europe’s largest roadside assistance provider — EVs are actually more reliable than their internal combustion engine (ICE) counterparts. And this isn’t just a small study — it’s based on a staggering 3.6 million breakdowns in 2024 alone.
For cars registered between 2020 and 2022, EVs averaged just 4.2 breakdowns per 1,000 vehicles, while ICE cars saw more than double that, at 10.4 per 1,000. Even with more EVs hitting the road, they only accounted for 1.2% of total breakdowns — a big win for the battery-powered crowd.
Among standout performers, some cars delivered exceptionally low breakdown rates. The Audi A4 clocked in at just 0.4 breakdowns per 1,000 vehicles for 2022 models, with Tesla’s Model 3 right behind at 0.5. The Volkswagen ID.4, another popular EV, also impressed with a rate of 1.0 – as did the Mitsubishi Eclipse Cross at 1.3. On the flip side, there were some major outliers: the Hyundai Ioniq 5 showed a surprisingly high 22.4 breakdowns per 1,000 vehicles for its 2022 models, while the hybrid Toyota RAV4 posted 18.4.
Interestingly, the most common issue for both EVs and ICE vehicles was exactly the same: the humble 12-volt battery. Despite all the futuristic tech in EVs, it’s this old-school component that causes 50% of all EV breakdowns, and 45% for gas-powered cars. Meanwhile, EVs shine in categories like engine management and electrical systems — areas where traditional engines are more complex and failure-prone.
But EVs aren’t completely flawless. They had a slightly higher rate of tire-related issues — 1.3 breakdowns per 1,000 vehicles compared to 0.9 for ICE cars. That could be due to their heavier weight and high torque, which can accelerate tire wear. Still, this trend is fading in newer EVs as tire tech and vehicle calibration improve.
Now, zooming out beyond Germany: a 2024 Consumer Reports study in the U.S. painted a different picture. It found that EVs, especially newer models, had more reliability issues than gas cars, citing tech glitches and inconsistent build quality. But it’s worth noting that the American data focused more on owner-reported problems, not just roadside breakdowns.
So, while the long-term story is still developing, especially for older EVs, Germany’s data suggests that when it comes to simply keeping you on the road, EVs are pulling ahead — quietly, efficiently, and with far fewer breakdowns than you might expect.

Read more
You can now lease a Hyundai EV on Amazon—and snag that $7,500 tax credit
amazon autos hyundai evs lease ioniq 6 n line seoul mobility show 2025 mk08

Amazon has changed how we shop for just about everything—from books to furniture to groceries. Now, it’s transforming the way we lease cars. Through Amazon Autos, you can now lease a brand-new Hyundai entirely online—and even better, you’ll qualify for the full $7,500 federal tax credit if you choose an electric model like the Ioniq 5, Ioniq 6, or Kona EV.
Here’s why that matters: As of January 2025, Hyundai’s EVs no longer qualify for the tax credit if you buy them outright, due to strict federal rules about battery sourcing and final assembly. But when you lease, the vehicle is technically owned by the leasing company (Hyundai Capital), which allows it to be classified as a “commercial vehicle” under U.S. tax law—making it eligible for the credit. That savings is typically passed on to you in the form of lower lease payments.
With Amazon’s new setup, you can browse Hyundai’s EV inventory, secure financing, trade in your current vehicle, and schedule a pickup—all without leaving the Amazon ecosystem.
It’s available in 68 markets across the U.S., and pricing is fully transparent—no hidden fees or haggling. While Hyundai is so far the only automaker fully participating, more are expected to join over time.
Pioneered by the likes of Tesla, purchasing or leasing vehicles online has been a growing trend since the Covid pandemic.
A 2024 study by iVendi found that 74% of car buyers expect to use some form of online process for their next purchase. In fact, 75% said online buying met or exceeded expectations, with convenience and access to information cited as top reasons. The 2024 EY Mobility Consumer Index echoed this trend, reporting that 25% of consumers now plan to buy their next vehicle online—up from 18% in 2021. Even among those who still prefer to finalize the purchase at a dealership, 87% use online tools for research beforehand.
Meanwhile, Deloitte’s 2025 Global Automotive Consumer Study reveals that while 86% of U.S. consumers still want to test-drive a vehicle in person, digital tools are now a critical part of the buying journey.
Bottom line? Amazon is making it easier than ever to lease an EV and claim that tax credit—without the dealership hassle. If you're ready to plug in, it might be time to add to cart.

Read more