Skip to main content

MIT’s new drone can hover like a quadcopter, soar like a plane

Whether it’s in science fiction movies or according to the reported sightings of members of the general public, one repeated claim about so-called flying saucers is that they possess an extraordinary degree of maneuverability. One moment they could be hovering, the next moving rapidly vertically and, the next, speeding horizontally like a jet plane. It’s a movement that screams “alien presence” because, frankly, no earthbound vehicle is capable of pulling off such feats.

Of course, that’s exactly the kind of thing that sounds like a challenge to the researchers at MIT’s renowned Computer Science & Artificial Intelligence Laboratory (CSAIL). They have designed a new type of drone which can turn on a dime from hovering like an ordinary quadcopter to swooping and gliding like a fixed-wing airplane. In doing so, they may just have solved solve some of the biggest challenges which exist with modern drones.

Recommended Videos

“We’ve developed a way for people to design and create their own custom drones that have rotors, but also have wings that let them fly like planes,” MIT CSAIL grad student Jie Xu, who took the lead on the project, told Digital Trends. “This lets them take off and land vertically like traditional multi-copter drones, but fly faster and potentially be able to carry more weight while flying.”

Solving a problem

MIT’s CSAIL group isn’t the first time a challenge like this has been taken on. Since drones first swept onto the scene, other researchers have attempted to create similar “hybrid” drones, although none have managed to solve this to everyone’s satisfaction. It turns out that taking two immensely complex flight dynamics — one involving rotors and the other wings — and getting them to work together in harmony is pretty darn tough. While designing such drones is possible, controlling them is far from easy.

Engineers trying to achieve this have therefore typically built their experimental drones with two switchable flight systems. One is used for controlling hovering, while the other is for horizontal gliding like a plane. Each one is controlled separately. This not only makes flying the finished drone difficult; it also makes designing them expensive, time-consuming, and challenging to easily translate to other drone designs and sizes. (Hence why the overwhelming majority of drones which are commercially available remain divided into distinct fixed-wing and multi-rotor categories.)

Hybrid Drones: Drones that can hover like helicopters and fly like planes

MIT’s approach represents a promising path forward. It makes it possible to design drones of different sizes and shapes easily able to switch between hovering and gliding — and all by using a single controller.

“Our system doesn’t have to store any particular modes for hovering or gliding, and can switch between the two actions by simply updating the drone’s target velocity,” Jie Xu continued. “We’ve done this by using neural networks to be able to develop the controller design for virtually any drone you want to design. Importantly, it works for real models without any additional parameter-tuning process, which helps close the gap between drones that work in virtual simulation and those that can actually be fabricated to work in actual real-world environments.”

To create their smart drone, the researchers used reinforcement learning, a type of machine learning in which A.I. agents learn to take actions in an environment that will maximize a particular reward. Being able to intelligently respond to metrics like target velocity means that MIT’s drone can adapt to different situations without the user having to manually switch between modes of flight. As the researchers write in a paper describing the work, “Our controller does not need to differentiate between the copter and flight modes or explicitly deal with the transition between modes. For example, the controller will automatically orient a tail-sitter hybrid UAV purely based on the input velocity – it will set it to a copter orientation for lower velocities and a plane orientation for higher velocities.”

Build your own drone

As impressive as all of this is, however, what are the chances that it results in an increase in the number of consumer drones that can offer this kind of functionality? Quite good, actually. The MIT CSAIL system is not only “mode free,” but also what the team describes as “model agnostic.” That means that the same neural network and learning algorithm proves efficient in vastly different drone configurations.

As a result, it would not be necessary to redesign control systems for each different drone developed. As part of the work, the team integrated their technology into a CAD program that allows users to select and match different drone parts to develop custom drones.

“Our hope is that this is something that would make hybrid drones accessible to anyone who wants to use one, from everyday people to companies that design consumer drones,” Xu continued. “Even someone who is not an expert in design would be able to figure out a design for a drone, wait a couple of hours for the system to compute its controller, and then be able to walk away with a ready-to-fly drone.”

Luke Dormehl
Former Digital Trends Contributor
I'm a UK-based tech writer covering Cool Tech at Digital Trends. I've also written for Fast Company, Wired, the Guardian…
What happened to Amazon’s inaugural Project Kuiper launch?
Official Imagery for Amazon Project Kuiper.

Amazon is aiming to take on SpaceX’s Starlink internet service using thousands of its own Project Kuiper satellites in low-Earth orbit.

The first Project Kuiper satellites were suppsoed to launch aboard a United Launch Alliance (ULA) Atlas V rocket from Cape Canaveral in Florida on April 9, but rough weather conditions forced the mission team to scrub the planned liftoff.

Read more
EVs top gas cars in German reliability report — but one weak spot won’t quit
future electric cars 2021 volkswagen id4 official 32

Electric vehicles are quietly crushing old stereotypes about being delicate or unreliable, and the data now backs it up in a big way. According to Germany’s ADAC — Europe’s largest roadside assistance provider — EVs are actually more reliable than their internal combustion engine (ICE) counterparts. And this isn’t just a small study — it’s based on a staggering 3.6 million breakdowns in 2024 alone.
For cars registered between 2020 and 2022, EVs averaged just 4.2 breakdowns per 1,000 vehicles, while ICE cars saw more than double that, at 10.4 per 1,000. Even with more EVs hitting the road, they only accounted for 1.2% of total breakdowns — a big win for the battery-powered crowd.
Among standout performers, some cars delivered exceptionally low breakdown rates. The Audi A4 clocked in at just 0.4 breakdowns per 1,000 vehicles for 2022 models, with Tesla’s Model 3 right behind at 0.5. The Volkswagen ID.4, another popular EV, also impressed with a rate of 1.0 – as did the Mitsubishi Eclipse Cross at 1.3. On the flip side, there were some major outliers: the Hyundai Ioniq 5 showed a surprisingly high 22.4 breakdowns per 1,000 vehicles for its 2022 models, while the hybrid Toyota RAV4 posted 18.4.
Interestingly, the most common issue for both EVs and ICE vehicles was exactly the same: the humble 12-volt battery. Despite all the futuristic tech in EVs, it’s this old-school component that causes 50% of all EV breakdowns, and 45% for gas-powered cars. Meanwhile, EVs shine in categories like engine management and electrical systems — areas where traditional engines are more complex and failure-prone.
But EVs aren’t completely flawless. They had a slightly higher rate of tire-related issues — 1.3 breakdowns per 1,000 vehicles compared to 0.9 for ICE cars. That could be due to their heavier weight and high torque, which can accelerate tire wear. Still, this trend is fading in newer EVs as tire tech and vehicle calibration improve.
Now, zooming out beyond Germany: a 2024 Consumer Reports study in the U.S. painted a different picture. It found that EVs, especially newer models, had more reliability issues than gas cars, citing tech glitches and inconsistent build quality. But it’s worth noting that the American data focused more on owner-reported problems, not just roadside breakdowns.
So, while the long-term story is still developing, especially for older EVs, Germany’s data suggests that when it comes to simply keeping you on the road, EVs are pulling ahead — quietly, efficiently, and with far fewer breakdowns than you might expect.

Read more
You can now lease a Hyundai EV on Amazon—and snag that $7,500 tax credit
amazon autos hyundai evs lease ioniq 6 n line seoul mobility show 2025 mk08

Amazon has changed how we shop for just about everything—from books to furniture to groceries. Now, it’s transforming the way we lease cars. Through Amazon Autos, you can now lease a brand-new Hyundai entirely online—and even better, you’ll qualify for the full $7,500 federal tax credit if you choose an electric model like the Ioniq 5, Ioniq 6, or Kona EV.
Here’s why that matters: As of January 2025, Hyundai’s EVs no longer qualify for the tax credit if you buy them outright, due to strict federal rules about battery sourcing and final assembly. But when you lease, the vehicle is technically owned by the leasing company (Hyundai Capital), which allows it to be classified as a “commercial vehicle” under U.S. tax law—making it eligible for the credit. That savings is typically passed on to you in the form of lower lease payments.
With Amazon’s new setup, you can browse Hyundai’s EV inventory, secure financing, trade in your current vehicle, and schedule a pickup—all without leaving the Amazon ecosystem.
It’s available in 68 markets across the U.S., and pricing is fully transparent—no hidden fees or haggling. While Hyundai is so far the only automaker fully participating, more are expected to join over time.
Pioneered by the likes of Tesla, purchasing or leasing vehicles online has been a growing trend since the Covid pandemic.
A 2024 study by iVendi found that 74% of car buyers expect to use some form of online process for their next purchase. In fact, 75% said online buying met or exceeded expectations, with convenience and access to information cited as top reasons. The 2024 EY Mobility Consumer Index echoed this trend, reporting that 25% of consumers now plan to buy their next vehicle online—up from 18% in 2021. Even among those who still prefer to finalize the purchase at a dealership, 87% use online tools for research beforehand.
Meanwhile, Deloitte’s 2025 Global Automotive Consumer Study reveals that while 86% of U.S. consumers still want to test-drive a vehicle in person, digital tools are now a critical part of the buying journey.
Bottom line? Amazon is making it easier than ever to lease an EV and claim that tax credit—without the dealership hassle. If you're ready to plug in, it might be time to add to cart.

Read more