Skip to main content

Greener techniques could help find rare minerals for phones

Promotional image for Tech For Change. Person standing on solar panel looking at sunset.
This story is part of Tech for Change: an ongoing series in which we shine a spotlight on positive uses of technology, and showcase how they're helping to make the world a better place.

Finding and extracting enough rare earth minerals to power the growing number of mobile phones is a tough challenge that can wreak havoc on the environment — but new techniques could help.

Researchers say they have removed valuable rare earth elements (REE) from waste at high enough yields to resolve issues for manufacturers while boosting their profits. The scientists said in a recent paper that their process is kinder to the environment because it uses less energy than other methods and turns the stream of acid often used to recover the elements into a trickle.

Recommended Videos

“A smartphone can have as many as eight different REEs in it,” Rice University chemist James Tour, the author of the study, told Digital Trends in an interview. “The red, blue, and green screen colors are enhanced by REEs, as are the vibrating mechanism and the speakers.”

Minerals that keep your phone running

People walk through the shaft at Steenkampskraal (SKK) rare-earth mine.
The rare-earth minerals in these mines are used in the manufacturing of powerful magnets, which are used in electric vehicles, wind turbines, robotics, and many other applications. Image used with permission by copyright holder

Tour’s lab used a special heating process that produces graphene from any solid carbon source to recover rare earth metals. The minerals have magnetic and electronic properties critical to modern electronics and green technologies.

While industrial extraction from coal fly ash, bauxite residue, and electronic waste usually involves strong acid — a time-consuming, non-green process — the Rice lab heats fly ash and other materials to about 5,432 degrees Fahrenheit in a second. The process turns the waste into highly soluble “activated REE species.”

Tour said treating fly ash by flash Joule heating “breaks the glass that encases these elements and converts REE phosphates to metal oxides that dissolve much more easily.” Industrial processes use a 15-molar concentration of nitric acid to extract the materials; the Rice process uses a much milder 0.1-molar concentration of hydrochloric acid that still yields more product.

The researchers found flash heating coal fly ash (CFA) more than doubled the yield of most rare earth elements using very mild acid than leaching untreated CFA in strong acids.

“The strategy is general for various wastes,” Bing Deng, one of the researchers, said. “We proved that the REE recovery yields were improved from coal fly ash, bauxite residue, and electronic wastes by the same activation process.”

Environmental issues

Deloitte Global predicts that smartphones — the world’s most popular consumer electronics devices that are expected to have an installed base of 4.5 billion in 2022 — will generate 146 million tons of CO2 or equivalent emissions this year alone.

“The fast turnover of new phones each year is a problem as we consume technology at a fast pace, which also has environmental impacts,” Alexander Gysi, a professor in the Department of Earth & Environmental Science at the New Mexico Institute of Mining & Technology, told Digital Trends in an interview.

While recycling would help cut emissions, mining is still cheaper and necessary to keep up with the growing demand for tech devices, said Gysi. Every year, their components become smaller and lighter, have a higher battery life, and are remixed to increase the quality of displays, he added.

Staples Begins Recyling Electronics To Tackle "E-Waste."
Tim Boyle/Getty Images

“Our cell phones are supercharged with the REE and other metals like copper and gold; hence being able to reuse some of the parts to extract REE would be beneficial, but we are not there yet.”

Gysi said that extracting REE from natural mineral deposits can be difficult, because these different REEs occur together in various mineral types. To extract the minerals requires mechanical or physical separation as well as chemical separation.

“This process can also involve chemicals that need to be treated carefully via mine waste recovery,” Gysi said. “With the mining and extraction regulations in North America, it could be beneficial to do it locally and in a responsible way, but it is likely to be more expensive and needs incentives to do so.”

Rare Earth Mineral (REEs) mining.
Rodger Bosch/AFP/Getty Images

Gysi’s lab is working on new REE extraction techniques. The researchers investigated how REEs are separated chemically in natural systems in supercritical hydrothermal fluids in the Earth’s crust.

“These are essentially high temperature and pressure water solutions,” Gysi said. “We study how different acid/bases and ligands like chloride, fluoride, and hydroxyl can bind to the REE, enhance their solubility, and even help fractionate them. This will permit predicting these metals’ solubility and fractionation behavior and could also potentially be used to develop new technologies.”

New methods to find minerals

Computers might also boost efforts to find rare minerals. Researchers have proposed an artificial intelligence (AI) system that could study a database of rare earth minerals, recognize patterns, and then enable it to spot new potential matches.

Before the advent of AI or machine learning (ML), the discovery of new materials was based on trial and error, materials scientist Prashant Singh, from the Ames Laboratory at Iowa State University and the author of the new study, told Digital Trends in an interview.

“The process to take a newly discovered material from lab to market may take 20-30 years, but AI/ML can significantly speed up this process by simulating material properties on computers before setting foot in a lab,” Singh said. “This makes the AI/ML useful for discovering technologically useful compounds.”

Sascha Brodsky
Sascha Brodsky is a writer who focuses on consumer technologies and privacy issues for a broad range of outlets. He’s been…
Upcoming OnePlus Watch 3 might have a rotating crown
Third part watch face on OnePlus Watch 2r.

After a less-than-exciting launch with the OnePlus Watch 2, it's time for a change — and hopefully, a wearable that more closely matches modern devices. We expect the OnePlus Watch 3 to release on January 7, but now new details suggest it might come with a rotating crown.

This update is a big win for OnePlus Watch fans. The crown has been a long-requested feature that will make it easier to navigate through the interface, and improved sensors give access to ECGs and other features that were missing in the previous generation, according to Yogesh Brar.

Read more
Google proposes big changes for the future of Search and Android apps
Google Chrome on an Android phone.

Google’s ongoing antitrust tussle spawned a list of sweeping policy suggestions — including a proposed sale of the Chrome business — by the Department of Justice. The focus of the lawsuit centers on the Search monopoly, but it has serious ramifications for Android and the overall browser situation.

Now, Google has shared its own “remedies proposal” to the DOJ’s recommendations, which it claims are going “far beyond what the Court’s decision is actually about.”

Read more
Gemini brings a fantastic PDF superpower to Files by Google app
step of Gemini processing a PDF in Files by Google app.

Google is on a quest to push its Gemini AI chatbot in as many productivity tools as possible. The latest app to get some generative AI lift is the Files by Google app, which now automatically pulls up Gemini analysis when you open a PDF document.

The feature, which was first shared on the r/Android Reddit community, is now live for phones running Android 15. Digital Trends tested this feature on a Pixel 9 running the stable build of Android 15 and the latest version of Google’s file manager app.

Read more