Skip to main content

This black hole is creating enormous glowing X-ray rings

A Quick Look at V404 Cygni

Astronomers are observing an unusual black hole which is surrounded by enormous X-ray rings. Using the Chandra X-ray Observatory and the Neil Gehrels Swift Observatory, researchers have been investigating how this strange phenomenon came to be and what it can tell us about both black holes and cosmic dust.

Recommended Videos

The black hole is part of a binary system called V404 Cygni, meaning the black hole has a companion star from which it is siphoning off material. As the black hole’s gravity pulls gas away from the star and devours it, the material is forming into a disk around the black hole. This disk glows in the X-ray wavelength, meaning the system is of a type called an X-ray binary.

But this particular system doesn’t just have a disk of material — it is also does something special, giving off periodic bursts of X-rays. These bursts bounce off the clouds of dust which are located between there and Earth, creating rings called light echos, in a similar way to how sound waves bounce off a wall.

To study this phenomenon, researchers collected data in both the X-ray and visible light wavelengths, combining the two into the image below. It shows a series of concentric rings, with some gaps due to the limits of Chandra’s field of view. In total, eight separate rings were observed.

The black hole in V404 Cygni.
The black hole in V404 Cygni is actively pulling material away from a companion star — with about half the mass of the Sun — into a disk around the invisible object. A burst of X-rays from the black hole detected in 2015 created the high-energy rings from a phenomenon known as light echoes, where light bounces off of dust clouds in between the system and Earth. X-ray: NASA/CXC/U.Wisc-Madison/S. Heinz et al.; Optical/IR: Pan-STARRS

This discovery isn’t only of interest because it can tell us about this black hole. It can also tell us about the dust clouds which were involved, and about the space in between V404 Cygni and Earth.

“The rings tell astronomers not only about the black hole’s behavior but also about the landscape between V404 Cygni and Earth,” Chandra scientists wrote. “For example, the diameter of the rings in X-rays reveals the distances to the intervening dust clouds the light ricocheted off. If the cloud is closer to Earth, the ring appears to be larger, and vice versa. The light echoes appear as narrow rings rather than wide rings or haloes because the X-ray burst lasted only a relatively short period of time. “

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
See incredible time lapses of two of space’s most famous objects
A Tour of Cassiopeia A & Crab Nebula Timelapses

Most objects in space, such as stars, have a lifecycle stretching over hundreds of thousands of years or more, so it's rare to see objects in the sky that look significantly different over a short period like a few years unless there's a dramatic transient event like a supernova. However, that's not to say that objects are static: Objects such as nebulae can be in flux, and, when observed closely, can be seen changing over time.

Quick Look: NASA's Chandra Releases Doubleheader of Blockbuster Hits

Read more
Biggest stellar black hole to date discovered in our galaxy
Astronomers have found the most massive stellar black hole in our galaxy, thanks to the wobbling motion it induces on a companion star. This artist’s impression shows the orbits of both the star and the black hole, dubbed Gaia BH3, around their common centre of mass. This wobbling was measured over several years with the European Space Agency’s Gaia mission. Additional data from other telescopes, including ESO’s Very Large Telescope in Chile, confirmed that the mass of this black hole is 33 times that of our Sun. The chemical composition of the companion star suggests that the black hole was formed after the collapse of a massive star with very few heavy elements, or metals, as predicted by theory.

Black holes generally come in two sizes: big and really big. As they are so dense, they are measured in terms of mass rather than size, and astronomers call these two groups of stellar mass black holes (as in, equivalent to the mass of the sun) and supermassive black holes. Why there are hardly any intermediate-mass black holes is an ongoing question in astronomy research, and the most massive stellar mass black holes known in our galaxy tend to be up to 20 times the mass of the sun. Recently, though, astronomers have discovered a much larger stellar mass black hole that weighs 33 times the mass of the sun.

Not only is this new discovery the most massive stellar black hole discovered in our galaxy to date but it is also surprisingly close to us. Located just 2,000 light-years away, it is one of the closest known black holes to Earth.

Read more
Stunning image shows the magnetic fields of our galaxy’s supermassive black hole
The Event Horizon Telescope (EHT) collaboration, who produced the first ever image of our Milky Way black hole released in 2022, has captured a new view of the massive object at the center of our Galaxy: how it looks in polarized light. This is the first time astronomers have been able to measure polarization, a signature of magnetic fields, this close to the edge of Sagittarius A*. This image shows the polarized view of the Milky Way black hole. The lines mark the orientation of polarization, which is related to the magnetic field around the shadow of the black hole.

The Event Horizon Telescope collaboration, the group that took the historic first-ever image of a black hole, is back with a new stunning black hole image. This one shows the magnetic fields twirling around the supermassive black hole at the heart of our galaxy, Sagittarius A*.

Black holes are hard to image because they swallow anything that comes close to them, even light, due to their immensely powerful gravity. However, that doesn't mean they are invisible. The black hole itself can't be seen, but the swirling matter around the event horizon's edges glows brightly enough to be imaged. This new image takes advantage of a feature of light called polarization, revealing the powerful magnetic fields that twirl around the enormous black hole.

Read more