Skip to main content

Scientists explain cosmic ‘question mark’ spotted by Webb space telescope

The shape of a question mark captured by the James Webb Space Telescope.
NASA, ESA, CSA

Considering the myriad of unknowns that still exist for scientists exploring the vastness of the universe, the recent discovery in deep space of what seems to be a giant question mark feels highly appropriate.

Recommended Videos

Captured by the powerful James Webb Space Telescope, the bright, distinctive object clearly bears the shape of a question mark, leaving some stargazers wondering if the cosmos is teasing us, or perhaps motivating us to keep on searching the depths of space for the secrets that it may reveal.

But after spending some time analyzing the image, scientists believe it most likely shows a pair of galaxies merging, with Webb’s perspective causing the event to take on the shape of the familiar punctuation mark.

“It’s probably a distant galaxy, or potentially interacting galaxies [whose] interactions may have caused the distorted question mark shape,” the Space Telescope Science Institute (STScI) in Baltimore, which manages Webb’s science operations, told space.com.

“Additional follow-up would be required to figure out what it is with any certainty,” according to the Institute, adding that this could well be the first time astronomers have seen a cosmic question mark.

The image that includes the mark was released by the Webb team at the end of June, but it’s only just started to receive widespread attention.

The main part of the capture (below) offers a detailed look at two actively forming young stars ( Herbig-Haro 46/47) located 1,470 light-years from Earth in the Vela Constellation. The stars are surrounded by a disk of material that they on feed as they grow. The question mark can just about be spotted in the background at the bottom of the image (we’ve put a green circle around it).

An image of deep space by the Webb telescope that also includes an object that's the shape of a question mark.
NASA, ESA, CSA. Image Processing: Joseph DePasquale (STScI)

The Webb telescope, which is located about a million miles from Earth, recently celebrated its first year of operations by sharing yet another stunning image from deep space.

The $10 billion project is a collaboration involving NASA, the European Space Agency, and the Canadian Space Agency. The aim is to make groundbreaking discoveries about the origins of the universe while also searching for distant planets that may support life.

Trevor Mogg
Contributing Editor
Not so many moons ago, Trevor moved from one tea-loving island nation that drives on the left (Britain) to another (Japan)…
Creepy cosmic eyes stare out from space in Webb and Hubble image
The gruesome palette of these galaxies is owed to a mix of mid-infrared light from the NASA/ESA/CSA James Webb Space Telescope, and visible and ultraviolet light from the NASA/ESA Hubble Space Telescope. The pair grazed one another millions of years ago. The smaller spiral on the left, catalogued as IC 2163, passed behind NGC 2207, the larger spiral galaxy at right. Both have increased star formation rates. Combined, they are estimated to form the equivalent of two dozen new stars that are the size of the Sun annually. Our Milky Way galaxy forms the equivalent of two or three new Sun-like stars per year. Both galaxies have hosted seven known supernovae, each of which may have cleared space in their arms, rearranging gas and dust that later cooled, and allowed many new stars to form. (Find these areas by looking for the bluest regions).

These sinister eyes gazing out from the depths of space star in a new Halloween-themed image, using data from both the Hubble Space Telescope and the James Webb Space Telescope. It shows a pair of galaxies, IC 2163 on the left and NGC 2207 on the right, which are creeping closer together and interacting to form a creepy-looking face.

The two galaxies aren't colliding directly into one another, as one is passing in front of the other, but they have passed close enough to light scrape by each other and leave indications. If you look closely at the galaxy on the left, you can see how its spiral arms have been pulled out into an elongated shape, likely because of its close pass to the gravity of the other nearby galaxy. The lines of bright red around the "eyes" are created by shock fronts, with material from each galaxy slamming together.

Read more
James Webb discovers a new type of exoplanet: an exotic ‘steam world’
An artist’s conception of the “steam world” GJ 9827 d, shown in the foreground in blue.

Our solar system has a wide variety of planet types, from tiny rocky Mercury to huge puffy gas giant Jupiter to distant ice giant Uranus. But beyond our own system, there are even more types of exoplanet out there, including water worlds covered in ocean and where life could potentially thrive. Now, researchers using the James Webb Space Telescope have identified a new and exotic type of planet called a steam world, which has an atmosphere almost entirely composed of water vapor.

The planet, called GJ 9827 d, was examined by the Hubble Space Telescope earlier this year and had researchers so intrigued that they wanted to go back for a closer look using Webb. They found that the planet, which is around twice the size of Earth, had a very different atmosphere from the typical hydrogen and helium that is usually seen. Instead, it was full of hot steam.

Read more
James Webb image shows two galaxies in the process of colliding
This composite image of Arp 107, created with data from the James Webb Space Telescope’s NIRCam (Near-InfraRed Camera) and MIRI (Mid-InfraRed Instrument), reveals a wealth of information about the star formation taking place in these two galaxies and how they collided hundreds of million years ago. The near-infrared data, shown in white, show older stars, which shine brightly in both galaxies, as well as the tenuous gas bridge that runs between them. The vibrant background galaxies are also brightly illuminated at these wavelengths.

A new image from the James Webb Space Telescope shows one of the universe's most dramatic events: the colliding of two galaxies. The pair, known as Arp 107, are located located 465 million light-years away and have been pulled into strange shapes by the gravitational forces of the interaction, but this isn't a purely destructive process. The collision is also creating new stars as young stars are born in swirling clouds of dust and gas.

The image above is a composite, bringing together data from Webb's NIRCam (Near-InfraRed Camera) and MIRI (Mid-InfraRed Instrument). These two instruments operate in different parts of the infrared, so they can pick up on different processes. The data collected in the near-infrared range is seen in white, highlighting older stars and the band of gas running between the two galaxies. The mid-infrared data is shown in orange and red, highlighting busy regions of star formation, with bright young stars putting out large amounts of radiation.

Read more