Skip to main content

Gaia discovers half a million new stars in the epic Omega Centauri cluster

This week saw the release of a treasure trove of data from the European Space Agency’s (ESA) Gaia mission, a space-based observatory that is mapping out the Milky Way in three dimensions. The newly released data includes half a million new stars and details about more than 150,000 asteroids within our solar system.

The overall aim of the Gaia mission is to create a full 3D map of our galaxy that includes not only stars, but also other objects like planets, comets, asteroids, and more. The mission was launched in 2013 and the data it collected is released in batches every few years, with previous releases including data on topics like the positions of over 1.8 billion stars.

ESA's star-surveying Gaia mission has released a treasure trove of new data as part of its ‘focused product release’. As part of this data release Gaia explored Omega Centauri, the largest globular cluster that can be seen from Earth and a great example of a ‘typical’ cluster.
ESA’s star-surveying Gaia mission has released a treasure trove of new data as part of its focused product release. Gaia explored Omega Centauri, the largest globular cluster that can be seen from Earth and a great example of a typical cluster. ESA/Gaia/DPAC, CC BY-SA 3.0 IGO

The new data release fills in some gaps from previous releases, particularly in areas of the sky that are densely packed with stars — such as the Omega Centauri globular cluster, shown above. The new view of this cluster shows 10 times as many stars as the previous data, with a total of 526,587 new stars identified.

Recommended Videos

“In Omega Centauri, we discovered over half a million new stars Gaia hadn’t seen before – from just one cluster!” said lead author Katja Weingrill of Germany’s Leibniz-Institute for Astrophysics Potsdam in a statement. Gaia will now be used to study more clusters and to collect more detailed information on them.

Please enable Javascript to view this content

Another key find in this release is a large number of gravitational lenses. This effect occurs when a massive object such as a galaxy cluster warps space-time, making light from more distant objects bend and acting like a magnifying glass. This allows researchers to see much more distant objects than they would be able to otherwise.

“Gaia is a real lens-seeker,” said co-author Christine Ducourant of France’s Laboratoire d’Astrophysique de Bordeaux. “Thanks to Gaia, we’ve found that some of the objects we see aren’t simply stars, even though they look like them. They’re actually really distant lensed quasars – extremely bright, energetic galactic cores powered by black holes. We now present 381 solid candidates for lensed quasars, including 50 that we deem highly likely — a gold mine for cosmologists, and the largest set of candidates ever released at once.”

Gaia wasn’t particularly designed to search for this kind of cosmology data, but it is turning up such findings as a bonus in its survey. “Although its key focus is as a star surveyor, Gaia is exploring everything from the rocky bodies of the solar system to multiply imaged quasars lying billions of light-years away, far beyond the edges of the Milky Way,” said Timo Prusti, Project Scientist for Gaia at ESA. “The mission is providing a truly unique insight into the universe and the objects within it, and we’re really making the most of its broad, all-sky perspective on the skies around us.”

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
Image of darkness and light shows new stars being born in Lupus 3 nebula
The two young, low-mass proto-stars HR 5999 and HR 6000 illuminate nearby dust, creating the reflection nebula Bernes 149. These stars grew out of the dusty dark cloud of Lupus 3, part of a larger complex of as many as nine dark clouds.

A gorgeous new image of a nebular 500 light-years away gives a peek into the process of star formation.

This image from the Dark Energy Camera shows both the dark cloud of Lupus 3 and the shining bright young stars of the nebula Bernes 149. The dark cloud here is essential to the star formation process, as it is a collection of gas and dust which provides the building blocks for new stars to be born. Known as a dark nebula because of its density, Lupus 3 obscures the light of the stars behind it, giving the impression of a swath of black across the starry sky.

Read more
1 million images get stitched together to form an atlas of star birth
This image shows the IRAS 11051-7706 object in the Chamaeleon constellation. New stars are born in the colourful clouds of gas and dust seen here. The infrared observations underlying the image reveal new details in the star-forming regions that are usually obscured by the clouds of dust. The image was produced with data collected by the VIRCAM instrument, which is attached to the VISTA telescope at ESO’s Paranal Observatory in Chile. The observations were done as part of the VISIONS survey, which will allow astronomers to better understand how stars form in these dust-enshrouded regions.

Stars are born in dense clouds of dust and gas called, adorably enough, stellar nurseries. These nurseries can be vast, spreading over 1,000 light-years across, and can produce thousands of baby stars. In order to study these busy, exciting regions, astronomers have put together thousands of images to create mosaics of five nearby nurseries, producing an atlas of star birth.

The researchers used images from the European Southern Observatory's Visible and Infrared Survey Telescope for Astronomy (VISTA), stitching together five years of observations to show regions like the L1688 region in the Ophiuchus constellation and the IRAS 11051-7706 and HH 909 A objects in the Chamaeleon constellation.

Read more
A sparkling field of stars cluster together in Hubble image
This image shows just a portion of M55, the cluster as a whole appears spherical because the stars’ intense gravitational attraction pulls them together. Hubble’s clear view above Earth’s atmosphere resolves individual stars in this cluster. Ground-based telescopes can also resolve individual stars in M55, but fewer stars are visible.

A sea of stars sparkles in this image from the Hubble Space Telescope. Showing an tremendous cluster of stars called a globular cluster, this view is located in the galaxy Messier 55.

A globular cluster is a group of stars which is tens of thousands or even millions of stars, and which is held together by gravity. That's why these clusters tend to form spherical shapes as the forces of gravity hold the cluster together.

Read more