Skip to main content

Hubble has a computer problem and it’s proving difficult to fix

The Hubble Space Telescope is deployed on April 25, 1990 from the space shuttle Discovery. Avoiding distortions of the atmosphere, Hubble has an unobstructed view peering to planets, stars and galaxies, some more than 13.4 billion light years away.
The Hubble Space Telescope is deployed on April 25, 1990, from the space shuttle Discovery. Avoiding distortions of the atmosphere, Hubble has an unobstructed view peering to planets, stars, and galaxies, some more than 13.4 billion light-years away. NASA/Smithsonian Institution/Lockheed Corporation

The beloved Hubble Space Telescope is experiencing a computer problem and is currently not collecting scientific data. NASA engineers are working on fixing the issue, but it’s proving difficult to get the 30-year-old telescope operating as it should.

The problem began on Sunday, June 13, when the Hubble payload computer stopped working. This computer, built in the 1980s, controls all of the telescope’s science instruments, so it’s an essential part of the Hubble system. When the computer stopped responding, all of the science instruments were automatically put into safe mode.

Recommended Videos

The first thing the NASA Hubble team did to try and fix the problem was just what we all do when a computer stops working — turn it off and turn it on again. They restarted the computer on Monday, June 14, but that didn’t fix the issue. They thought that the problem might be a degrading memory module, so they got ready to switch to a backup module instead. But that didn’t work either, as the command to switch to the backup wasn’t accepted.

Please enable Javascript to view this content

The Hubble team continued to work on running diagnostics and bringing the memory module online through last week. They found that the issue might actually lie in a different piece of hardware, the Standard Interface (STINT), or with the Central Processing Module (CPM), with the issue with the memory module being a symptom of this underlying problem.

There are two payload computers in the telescope, the primary one and a backup, which both use the same type of hardware. So the team tried turning on the backup computer this week, but it had the same problem as the primary computer. Even though it didn’t work, the fact the same error happened with both computers gives the team more information on what might be wrong.

“Since it is highly unlikely that all individual hardware elements have a problem, the team is now looking at other hardware as the possible culprit, including the Command Unit/Science Data Formatter (CU/SDF), another module on the SI C&DH,” NASA wrote. “The CU formats and sends commands and data to specific destinations, including the science instruments. The SDF formats the science data from the science instruments for transmission to the ground. The team is also looking at the power regulator to see if possibly the voltages being supplied to hardware are not what they should be. A power regulator ensures a steady constant voltage supply. If the voltage is out of limits, it could cause the problems observed.”

The team intends to continue its testing over the next week. Fingers crossed for this very special piece of scientific equipment to be fixed soon so it can get back to capturing stunning images of space.

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
Hubble captures image of a spectacular ‘stellar volcano’
Evolution of R Aquarii

A gorgeous image from the Hubble Space Telescope shows a nearby star called R Aquarii that is the site of dramatic activity: violent eruptions of matter that is thrown out into the space around it. Informally dubbed as a "stellar volcano" for the way it is throwing out matter like lava spewing from deep underground, the star makes for a stunning image, but it also holds an unexpected surprise. The star is not one single object, but two.

Known as a symbiotic variable star, it consists of a red giant and a white dwarf that orbit each other in an ongoing dance. The red giant pulses, with its temperature and brightness changing over a 390-day period. This intersects with the 44-year orbital period of the white dwarf. When the white dwarf starts to close in on the red giant, it sucks off some of its gas via gravity and builds up the disk around it until this collapses and explodes, throwing off jets of material. Then the cycle begins again.

Read more
Nvidia might finally fix its VRAM problem — but it will take time
The Razer Blade 14 and 18 on a table.

It's no secret that some of Nvidia's best graphics cards could use a little more VRAM. According to a new leak, Nvidia may be addressing that problem in a big way -- at least in laptops. The RTX 5090 laptop GPU is now reported to come with 24GB VRAM across a 256-bit memory bus. The downside? These new laptops might not make it to market as soon as we'd hoped.

The information comes from Moore's Law Is Dead, who cites his own industry sources as he spills the beans on RTX 50-series laptop specs. Up until now, we've not heard much about Nvidia's plans for RTX 50 laptops, indicating that they might be a few months away. The YouTuber agrees with this, saying that Nvidia might be targeting a launch window in the first or second quarter of 2025. This might not affect the entire lineup, though.

Read more
James Webb trains its sights on the Extreme Outer Galaxy
The NASA/ESA/CSA James Webb Space Telescope has observed the very outskirts of our Milky Way galaxy. Known as the Extreme Outer Galaxy, this region is located more than 58 000 light-years from the Galactic centre.

A gorgeous new image from the James Webb Space Telescope shows a bustling region of star formation at the distant edge of the Milky Way. Called, dramatically enough, the Extreme Outer Galaxy, this region is located 58,000 light-years away from the center of the galaxy, which is more than twice the distance from the center than Earth is.

Scientists were able to use Webb's NIRCam (Near-Infrared Camera) and MIRI (Mid-Infrared Instrument) instruments to capture the region in sparkling detail, showing molecular clouds called Digel Clouds 1 and 2 containing clumps of hydrogen, which enables the formation of new stars.

Read more