Skip to main content

Molten ring in space allows Hubble to peer 9 billion years into the past

Gravity warps space in strange and counter-intuitive ways, and the bigger the source of gravity, the bigger the warping. One example of gravity’s optical illusions is beautiful rings in space named Einstein rings, one of which was recently captured by the Hubble Space Telescope.

Named for the physicist who predicted gravity’s strange stretching influence on space, studying rings like the one shown below can help astronomers peer out far into the distance, seeing a galaxy as it looked over 9 billion years ago.

Image, taken with the NASA/ESA Hubble Space Telescope, depicts GAL-CLUS-022058s, located in the southern hemisphere constellation of Fornax (The Furnace).
The narrow galaxy elegantly curving around its spherical companion in this image is a fantastic example of a truly strange and very rare phenomenon. This image, taken with the NASA/ESA Hubble Space Telescope, depicts GAL-CLUS-022058s, located in the southern hemisphere constellation of Fornax (The Furnace). GAL-CLUS-022058s is the largest and one of the most complete Einstein rings ever discovered in our Universe. ESA/Hubble & NASA, S. Jha; Acknowledgement: L. Shatz

The object might look like a ring, but the source of the light is actually a regular old galaxy. The ring shape forms due to a phenomenon called gravitational lensing, in which the light from the distant galaxy is warped by the gravity of a galaxy cluster in between it and us.

Recommended Videos

Not only does this phenomenon change the apparent shape of the galaxy, but it also magnifies and brightens it. The galaxy appears 20 times brighter due to the lensing effect, which allowed Hubble to image it with the equivalent of an enormous 48-meter-aperture telescope.

Please enable Javascript to view this content

This particular ring is formally known as GAL-CLUS-022058s, but it has a more colloquial nickname as well: The Molten Ring, which is appropriately located in the constellation of Fornax (the Furnace). This image was shared as a Hubble picture of the week in December last year, and since then researchers have been studying the ring using other tools as well like the European Southern Observatory’s Very Large Telescope (VLT) FORS instrument.

By looking at this ring, researchers can learn about a very distant galaxy, effectively looking back in time to when the universe was less than half of its current age. This period was a busy, active one in which many stars were being born.

“The lensed galaxy is one of the brightest galaxies in the millimeter wavelength regime,” said one of the authors, Helmut Dannerbauer of the Institute of Astrophysics of the Canary Islands in Spain. “Our research has also shown that it is a normal star-forming galaxy (a so-called main sequence galaxy) at the peak epoch of star formation in the Universe.”

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
Hubble Space Telescope is back up and running following gyro problem
Hubble orbiting more than 300 miles above Earth as seen from the space shuttle.

The Hubble Space Telescope is back to full operations after spending several weeks in safe mode due to a problem with one of its components. The telescope first experienced issues with one of its gyros on November 19, and was in and out of safe mode several times in the following days. It has remained in safe mode since November 23, but came back online on Friday, December 8.

The problem was caused by one of the telescope's three operational gyros, which are devices that help to point the telescope in the right direction. Although it would have been possible to operate the telescope with just one of these, that would have resulted in lost observing time as it would take longer to move the telescope to a new target between observations. With all three gyros now back in use, the telescope has returned to science operations.

Read more
Hubble Space Telescope is in safe mode due to a gyro problem
Hubble orbiting more than 300 miles above Earth as seen from the space shuttle.

The Hubble Space Telescope has experienced a problem with its hardware and is currently in safe mode, with science operations paused until the fault can be corrected. The problem is with one of the telescope's three operational gyros, which are used to control the direction in which the telescope points. When a fault like this is detected, the telescope automatically goes into a safe mode in which it performs only essential operations to prevent any damage to its hardware.

"The telescope automatically entered safe mode when one of its three gyroscopes gave faulty readings," NASA wrote in a statement. "The gyros measure the telescope’s turn rates and are part of the system that determines which direction the telescope is pointed. While in safe mode, science operations are suspended, and the telescope waits for new directions from the ground."

Read more
Hubble spots an Earth-sized exoplanet just 22 light-years away
An artist’s concept of the nearby exoplanet, LTT 1445Ac, which is the size of Earth. The planet orbits a red dwarf star.

Although astronomers have now discovered more than 5,000 exoplanets, or planets outside of the solar system, the large majority of these planets are considerably larger than Earth. That's partly because it's easier to spot larger planets from tremendous distances across space. So it's exciting when an Earth-sized planet is discovered -- and the Hubble Space Telescope has recently confirmed that a nearby planet, which is diminutive by exoplanet standards, is 1.07 times the size of Earth.

The planet LTT 1445Ac was first discovered by NASA's Transiting Exoplanet Survey Satellite (TESS) in 2022, but it was hard to determine its exact size due to the plane of its orbit around its star as seen from Earth. “There was a chance that this system has an unlucky geometry and if that’s the case, we wouldn’t measure the right size. But with Hubble’s capabilities we nailed its diameter,” said lead researcher Emily Pass of the Harvard-Smithsonian Center for Astrophysics in a statement.

Read more