Skip to main content

Hubble peered across 150 million light-years to image this galaxy

This image shows the spiral galaxy NGC 5037, in the constellation of Virgo. First documented by William Herschel in 1785, the galaxy lies about 150 million light-years away from Earth. Despite this distance, we can see the delicate structures of gas and dust within the galaxy in extraordinary detail. This detail is possible using Hubble’s Wide Field Camera 3 (WFC3), whose combined exposures created this image.
This image shows the spiral galaxy NGC 5037, in the constellation of Virgo. First documented by William Herschel in 1785, the galaxy lies about 150 million light-years away from Earth. Despite this distance, we can see the delicate structures of gas and dust within the galaxy in extraordinary detail. This detail is possible using Hubble’s Wide Field Camera 3 (WFC3), whose combined exposures created this image. ESA/Hubble & NASA, D. Rosario; Acknowledgment: L. Shatz

This week’s treat from the Hubble Space Telescope is an image of the spiral galaxy NGC 5037, located around 150 million light-years away. The swirls of dust and gas twirling around the galactic center form a dramatic picture, making the galaxy stand out against the blackness of the space beyond. Although the galaxy does have a very bright central region, called an active galactic nucleus, most of the light coming from this area is obscured by the dust which surrounds it.

Recommended Videos

This galaxy is a part of the Virgo Cluster, a group of galaxies in the Virgo constellation. There are up to 2,000 galaxies in this cluster, including the famous Messier 87 galaxy from which the historical first image of a black hole was taken. Astronomers have ways of grouping galaxies to organize them, with the cluster being one such grouping. Above the cluster is a group called a supercluster — the Virgo Supercluster contains 100 galaxy groups including both the Virgo Cluster and the Local Group. The Local Group is the group our Milky Way galaxy resides in, along with its satellite galaxies and the Andromeda galaxy.

To see all the way to the NGC 5037 galaxy, Hubble used its Wide Field Camera 3 (WFC3) — the instrument used to acquire many of the telescope’s most famous images. “WFC3 is a very versatile camera, as it can collect ultraviolet, visible, and infrared light, thereby providing a wealth of information about the objects that it observes,” the Hubble scientists write.

“WFC3 was installed on Hubble by astronauts in 2009, during servicing mission 4, which was Hubble’s fifth and final servicing mission. Servicing mission 4 was intended to prolong Hubble’s life for another five years. 12 years later, both Hubble and WFC3 remain in active use!”

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
Feast your eyes on 10 years of Hubble images of Jupiter, Saturn, Uranus, Neptune
This is a montage of NASA/ESA Hubble Space Telescope views of our solar system's four giant outer planets: Jupiter, Saturn, Uranus, and Neptune, each shown in enhanced color. The images were taken over nearly 10 years, from 2014 to 2024.

While the Hubble Space Telescope might be most famous for its images of beautiful and far-off objects like nebulae or distant galaxies, it also takes images of objects closer to home, including the planets right here in our own solar system. For the past 10 years, Hubble has been studying the outer planets in a project called OPAL (Outer Planet Atmospheres Legacy), capturing regular images of each of the four outer planets so scientists can study their changes over time.

The planets Jupiter, Saturn, Uranus, and Neptune are different in many ways from Earth, as they are gas giants and ice giants rather than rocky planets. But they do have some similar phenomena, such as weather that regularly changes, including epic events like storms that are so large they can be seen from space. Jupiter's Great Red Spot, for example, the big orange-red eye shape that is visible on most images of the planet, is an enormous storm larger than the width of the entire Earth and which has been raging for centuries.

Read more
Webb and Hubble snap the same object for two views of one galaxy
Featured in this NASA/ESA/CSA James Webb Space Telescope Picture of the Month is the spiral galaxy NGC 2090, located in the constellation Columba. This combination of data from Webb’s MIRI and NIRCam instruments shows the galaxy’s two winding spiral arms and the swirling gas and dust of its disc in magnificent and unique detail.

With all the excitement over the last few years for the shiny and new James Webb Space Telescope, it's easy to forget about the grand old master of the space telescopes, Hubble. But although Webb is a successor to Hubble in some ways, with newer technology and the ability to see the universe in even greater detail, it isn't a replacement. A pair of new images shows why: with the same galaxy captured by both Webb and Hubble, you can see the different details picked out by each telescope and why having both of them together is such a great boon for scientists.

The galaxy NGC 2090 was imaged by Webb, shown above, using its MIRI and NIRCam instruments. These instruments operate in the mid-infrared and near-infrared portions of the electromagnetic spectrum respectively, which is why the arms of this galaxy appear to be glowing red. These arms are made of swirling gas and dust, and within them are compounds called polycyclic aromatic hydrocarbons that glow brightly in the infrared. The blue color in the center of the galaxy shows a region of young stars burning hot and bright.

Read more
Astronomers snap first up-close image of a star outside our galaxy
This image shows an artist’s reconstruction of the star WOH G64, the first star outside our galaxy to be imaged in close-up. It is located at a staggering distance of over 160 000 light-years away in the Large Magellanic Cloud. This artistic impression showcases its main features: an egg-shaped cocoon of dust surrounding the star and a ring or torus of dust. The existence and shape of the latter require more observations to be confirmed.

It's sometimes hard to grasp the scale of our universe, when even our own galaxy is so large and filled with billions of stars. But all of the stars that we have seen in detail are contained within the roughly 100,000 light-year span of our Milky Way galaxy. That is, until now, as astronomers recently observed a star outside of our galaxy up close for the first time.

The researchers looked at star WOH G64, located 160,000 light-years away, using the European Southern Observatory’s Very Large Telescope Interferometer. The image shows the main bulk of the star surrounded by a puffy cocoon of dust and gas.

Read more