Skip to main content

This is the remnant of a star that exploded 1,700 years ago

This Hubble Space Telescope portrait reveals the gaseous remains of an exploded massive star that erupted approximately 1,700 years ago.
This Hubble Space Telescope portrait reveals the gaseous remains of an exploded massive star that erupted approximately 1,700 years ago. The stellar corpse, a supernova remnant named 1E 0102.2-7219, met its demise in the Small Magellanic Cloud, a satellite galaxy of our Milky Way. NASA , ESA , STScI, and J. Banovetz and D. Milisavljevic (Purdue University)

When a large star reaches the end of its life, it explodes in an enormous outpouring of energy called a supernova. As the shockwave from the explosion travels out into space, it creates a remnant that can persist for thousands of years. One such remnant has been imaged by the Hubble Space Telescope, and researchers have tracked its origin back to a supernova that occurred 1,700 years ago.

To work out the age of remnant 1E 0102.2-7219, the Hubble researchers compared images of it taken 10 years apart. By comparing the two, they could see how clumps of ejecta (or knots) were spreading out over time. And by running this rate backward, they could work out the time at which the supernova must have occurred.

Recommended Videos

This result differs from previous attempts to pinpoint the age of the remnant, which used data from different cameras. By using data from the same camera, the new result is more accurate.

Please enable Javascript to view this content

“A prior study compared images taken years apart with two different cameras on Hubble, the Wide Field Planetary Camera 2 and the Advanced Camera for Surveys (ACS),” research team leader Danny Milisavljevic of Purdue University explained in a statement. “But our study compares data taken with the same camera, the ACS, making the comparison much more robust; the knots were much easier to track using the same instrument. It’s a testament to the longevity of Hubble that we could do such a clean comparison of images taken 10 years apart.”

When the supernova occurred, it also sent the crushed heart of the star — a neutron star — zipping off into space. The researchers estimate that the neutron star is moving at more than 2 million miles per hour.

“That is pretty fast and at the extreme end of how fast we think a neutron star can be moving, even if it got a kick from the supernova explosion,” fellow team leader John Banovetz said.

The researchers have identified an object which might be the neutron star in question, but they aren’t sure if it definitely is the object they’re looking for just yet.

“More recent investigations call into question whether the object is actually the surviving neutron star of the supernova explosion. It is potentially just a compact clump of supernova ejecta that has been lit up, and our results generally support this conclusion,” Banowetz said.

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
Hubble spies baby stars being born amid chaos of interacting galaxies
Galaxy AM 1054-325 has been distorted into an S-shape from a normal pancake-like spiral shape by the gravitational pull of a neighboring galaxy, seen in this Hubble Space Telescope image. A consequence of this is that newborn clusters of stars form along a stretched-out tidal tail for thousands of light-years, resembling a string of pearls. They form when knots of gas gravitationally collapse to create about 1 million newborn stars per cluster.

When two galaxies collide, the results can be destructive, with one of the galaxies ending up ripped apart, but it can also be constructive too. In the swirling masses of gas and dust pulled around by the gravitational forces of interacting galaxies, there can be bursts of star formation, creating new generations of stars. The Hubble Space Telescope recently captured one such hotbed of star formation in galaxy AM 1054-325, which has been distorted into an unusual shape due to the gravitational tugging of a nearby galaxy.

Galaxy AM 1054-325 has been distorted into an S-shape from a normal pancake-like spiral shape by the gravitational pull of a neighboring galaxy, as seen in this Hubble Space Telescope image. A consequence of this is that newborn clusters of stars form along a stretched-out tidal tail for thousands of light-years, resembling a string of pearls. NASA, ESA, STScI, Jayanne English (University of Manitoba)

Read more
Hubble captures an exceptionally luminous supernova site
This NASA Hubble Space Telescope image is of the small galaxy known as UGC 5189A.

This week's image from the Hubble Space Telescope shows the aftermath of an epic explosion in space caused by the death of a massive star.

Some of the most dramatic events in the cosmos are supernovas, when a massive star runs out of fuel to fuse -- first running out of hydrogen, then helium, then burning through heavier elements -- and eventually can no longer sustain the outward pressure from heat caused by this fusion. When that happens, the star collapses suddenly into a dense core, and its outer layers are thrown off in a tremendous explosion called a Type II supernova.

Read more
Four telescopes work together to create a gorgeous image of a supernova remnant
This deep dataset from Chandra of the remains of a supernova known as 30 Doradus B (30 Dor B) reveals evidence for more than one supernova explosion in the history of this remnant. Unusual structures in the Chandra data cannot be explained by a single explosion. These images of 30 Dor B also show optical data from the Blanco telescope in Chile, and infrared data from Spitzer. Additional data from Hubble highlights sharp features in the image.

A stunning new image of a supernova remnant combines data from four different telescopes to show a colorful, detailed picture of a busy region of space. The remnant 30 Doradus B (or 30 Dor B) was created when a massive star came to the end of its life and exploded, and while the explosion was only brief, it sculpted the dust and gas around the star in a way that remains visible even now, thousands of years later.

This deep dataset from Chandra of the remains of a supernova known as 30 Doradus B (30 Dor B) reveals evidence of more than one supernova explosion in the history of this remnant. Unusual structures in the Chandra data cannot be explained by a single explosion. These images of 30 Dor B also show optical data from the Blanco telescope in Chile, and infrared data from Spitzer. Additional data from Hubble highlights sharp features in the image. Credit: X-ray: NASA/CXC/Penn State Univ./L. Townsley et al.; Optical: NASA/STScI/HST; Infrared: NASA/JPL/CalTech/SST; Image Processing: NASA/CXC/SAO/J. Schmidt, N. Wolk, K. Arcand

Read more