Skip to main content

One galaxy, two views: see a comparison of images from Hubble and Webb

It might not seem obvious why astronomers need multiple different powerful space telescopes. Surely a more powerful telescope is better than a less powerful one? So why are there multiple different telescopes in orbit, either around Earth or around the sun?

The answer is to do with two main factors. One is the telescope’s field of view, meaning how much of the sky it looks at. Some telescopes are useful for looking at large areas of the sky in less detail, working as survey telescopes to identify objects for further research or to look at the universe on a large scale — like the recently launched Euclid mission. While others, like the Hubble Space Telescope, look at small areas of the sky in great detail, which is useful for studying particular objects.

Recommended Videos

The other important factor for space telescopes is the wavelength which they operate in. Both Hubble and the James Webb Space Telescope are used to study objects like galaxies, but they do so in different wavelengths. Hubble operates primarily in the visible light wavelength, the same as human eyes, while Webb operates in the infrared. That means that they can see different aspects of the same objects.

To demonstrate how that works in practice, a new comparison shows the same target, galaxy NCG 3256, as seen by both Webb and Hubble.

The peculiar galaxy NGC 3256 dominates this image from the NASA/ESA/CSA James Webb Space Telescope. This Milky Way-sized galaxy lies about 120 million light-years away in the constellation Vela, and is a denizen of the Hydra-Centaurus Supercluster.
The peculiar galaxy NGC 3256 dominates this image from the NASA/ESA/CSA James Webb Space Telescope. This Milky Way-sized galaxy lies about 120 million light-years away in the constellation Vela, and is a denizen of the Hydra-Centaurus Supercluster. ESA/Webb, NASA & CSA, L. Armus, A. Evans

This Webb image shows the tendrils of dust and gas which form the arms of this galaxy. As new young stars are born from the dust and gas, they give off radiation that hits the dust grains around them, making that dust glow in the infrared. The young stars also shine brightly in the infrared wavelength, with the brightest regions indicating hotbeds of star formation.

The peculiar galaxy NGC 3256 takes centre stage in this image from the NASA/ESA Hubble Space Telescope. This distorted galaxy is the wreckage of a head-on collision between two spiral galaxies which likely occurred 500 million years ago, and it is studded with clumps of young stars which were formed as gas and dust from the two galaxies collided.
The peculiar galaxy NGC 3256 takes center stage in this image from the NASA/ESA Hubble Space Telescope. This distorted galaxy is the wreckage of a head-on collision between two spiral galaxies which likely occurred 500 million years ago, and it is studded with clumps of young stars which were formed as gas and dust from the two galaxies collided. ESA/Hubble, NASA

The Hubble image shows the same galaxy but seen in a different wavelength, and was originally taken in 2018. While Webb’s infrared view allows it to look through clouds of dust, in the visible light range that Hubble operates in the dust creates dark threads which block out the light. The galaxy is much brighter in the infrared than in the visible light wavelength, but in this range, you can more clearly see that the galaxy actually has two centers, or nuclei, which is the result of two galaxies merging together.

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
Gorgeous James Webb Space Telescope images land on new U.S. stamps
A new USPS stamp featuring an image taken by the James Webb Space Telescope.

In a mark of its huge impact on the world of science and astronomy, NASA’s James Webb Space Telescope finds itself once again as the inspiration for a new set of stamps from the United States Postal Service (USPS).

Two new stamps issued this month feature iconic images captured by Webb, one of them showing a spiral galaxy called NGC 628. “Webb’s observations combine near- and mid-infrared light to reveal glowing gas and dust in stark shades of orange and red, as well as finer spiral shapes with the appearance of jagged edges,” NASA said of the image (below), adding that the galaxy is located 32 million light-years away in the Pisces constellation.

Read more
Hubble snaps another gorgeous image of the Tarantula Nebula
This NASA/ESA Hubble Space Telescope image features a dusty yet sparkling scene from one of the Milky Way’s satellite galaxies, the Large Magellanic Cloud. The Large Magellanic Cloud is a dwarf galaxy situated about 160,000 light-years away in the constellations Dorado and Mensa.

This gorgeous new image from the Hubble Space Telescope shows a bustling nearby star forming region called the Tarantula Nebula. Given its name due to its complex, web-like internal structure, this nebula is located in a satellite galaxy of the Milky Way called the Large Magellanic Cloud and is often studied by astronomers researching star formation and evolution.

This new image shows the edges of the nebula, further out from its center. In the middle of the nebula are enormous stars that are as much as 200 times the mass of the sun, but here on the outskirts the view is calmer.

Read more
See the majestic Southern Pinwheel Galaxy in this Dark Energy Camera image
Twelve million light-years away lies the galactic masterpiece Messier 83, also known as the Southern Pinwheel Galaxy. Its swirling spiral arms display a high rate of star formation and host six detected supernovae. This image was captured with the Department of Energy-fabricated Dark Energy Camera, mounted on the U.S. National Science Foundation Víctor M. Blanco 4-meter Telescope at Cerro Tololo Inter-American Observatory in Chile, a Program of NSF NOIRLab.

An image from the Dark Energy Camera (DECam) shows a striking celestial sight: the Southern Pinwheel Galaxy, a gorgeous face-on galaxy that is one of the closest and brightest barred spiral galaxies in the sky. Also known as Messier 83, the galaxy is bright enough that it can even be seen with binoculars, but this image from a 4-meter Víctor M. Blanco Telescope shows the kind of stunning detail that can be picked out using a powerful instrument.

"This image shows Messier 83’s well-defined spiral arms, filled with pink clouds of hydrogen gas where new stars are forming," explains NOIRLab from the National Science Foundation, which released the image. "Interspersed amongst these pink regions are bright blue clusters of hot, young stars whose ultraviolet radiation has blown away the surrounding gas. At the galaxy’s core, a yellow central bulge is composed of older stars, and a weak bar connects the spiral arms through the center, funneling gas from the outer regions toward the core. DECam’s high sensitivity captures Messier 83’s extended halo, and myriad more distant galaxies in the background."

Read more