Skip to main content

See the very first image (and first selfie!) from James Webb

The James Webb Space Telescope is in its final orbit and has its science instruments turned on, but it’ll still be several months before the world’s most powerful space telescope is ready to collect science data. That’s because the telescope not only needs to reach a stable temperature but also because it needs to go through the careful and complex process of aligning its mirrors. But that doesn’t mean there’s nothing to see from this brand new telescope — in fact, NASA has just released both the first image captured by the telescope and even a selfie snapped by one of the telescope’s cameras.

The first image might not look like much, but it’s an indication that Webb’s NIRCam instrument is working to collect light from its target — a particularly bright star called HD 84406. The 18 points of light in the image represent each of the 18 segments of the telescope’s primary mirror, which are gradually being brought into alignment by making nanometer adjustments. “The entire Webb team is ecstatic at how well the first steps of taking images and aligning the telescope are proceeding,” said Marcia Rieke, principal investigator for the NIRCam instrument in a statement. “We were so happy to see that light makes its way into NIRCam.”

An image mosaic created by pointing the telescope at a bright, isolated star in the constellation Ursa Major known as HD 84406.
This image mosaic was created by pointing the telescope at a bright, isolated star in the constellation Ursa Major known as HD 84406. This star was chosen specifically because it is easily identifiable and not crowded by other stars of similar brightness, which helps to reduce background confusion. NASA

The image is a mosaic, stitched together from a huge 54 gigabytes of raw data captured over a 25-hour period. This is just a portion of the full mosaic, showing the same star imaged 18 times. This is invaluable data for the team as they work on aligning the mirrors to bring the telescope into focus.

Recommended Videos

In addition, the NIRCam instrument used a special lens to snap an image of the telescope itself, showing the distinctive hexagon-shaped mirror segments in the telescope’s first selfie. You can see one of the segments glowing brightly as that segment was pointed toward a star, while the other segments are currently at different alignments.

Selfie of a James Webb telescope mirror created using a specialized pupil imaging lens inside of the NIRCam instrument.
This “selfie” was created using a specialized pupil imaging lens inside of the NIRCam instrument that was designed to take images of the primary mirror segments instead of images of space. This configuration is not used during scientific operations and is used strictly for engineering and alignment purposes. In this case, the bright segment was pointed at a bright star, while the others aren’t currently in the same alignment. This image gave an early indication of the primary mirror alignment to the instrument. NASA

Over the next few months, the images captured by Webb will become sharper and show more details as the mirrors are aligned and the telescope’s other three instruments reach their stable temperatures and start capturing data as well. For now, the images show that the telescope is healthy and operating for the first time. “Launching Webb to space was, of course, an exciting event, but for scientists and optical engineers, this is a pinnacle moment, when light from a star is successfully making its way through the system down onto a detector,” said Michael McElwain, Webb observatory project scientist at NASA’s Goddard Space Flight Center.

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
James Webb discovers a new type of exoplanet: an exotic ‘steam world’
An artist’s conception of the “steam world” GJ 9827 d, shown in the foreground in blue.

Our solar system has a wide variety of planet types, from tiny rocky Mercury to huge puffy gas giant Jupiter to distant ice giant Uranus. But beyond our own system, there are even more types of exoplanet out there, including water worlds covered in ocean and where life could potentially thrive. Now, researchers using the James Webb Space Telescope have identified a new and exotic type of planet called a steam world, which has an atmosphere almost entirely composed of water vapor.

The planet, called GJ 9827 d, was examined by the Hubble Space Telescope earlier this year and had researchers so intrigued that they wanted to go back for a closer look using Webb. They found that the planet, which is around twice the size of Earth, had a very different atmosphere from the typical hydrogen and helium that is usually seen. Instead, it was full of hot steam.

Read more
See the wonders of the Milky Way in this new infrared map
The Lobster Nebula seen with ESO’s VISTA telescope.

The wonders of our galaxy are on full display in a new infrared map of the Milky Way, showing a stunning 1.5 billion objects using data collected over 13 years. Researchers used the European Southern Observatory (ESO)’s VISTA telescope to collect 500 terabytes of data, showing the nebulae, globular clusters, stars, planets, brown dwarfs, and other objects that make up our galaxy.

The VISTA telescope (Visible and Infrared Survey Telescope for Astronomy), located on the Paranal Observatory in Chile, has an infrared instrument called VIRCAM that is able to look through clouds of dust and gas to observe objects that would be invisible in the visible light wavelength. Since 2010, researchers have been using this instrument to observe the Milky Way. They observed each patch of the sky multiple times, so they could see not only the location of particular objects but also how they were moving over time.

Read more
‘That’s weird’: This galaxy could help astronomers understand the earliest stars
The newly-discovered GS-NDG-9422 galaxy appears as a faint blur in this James Webb Space Telescope NIRCam (Near-Infrared Camera) image. It could help astronomers better understand galaxy evolution in the early Universe.

Astronomers using the James Webb Space Telescope have spotted a weird galaxy that originated just a billion years after the Big Bang. Its strange properties are helping researchers to piece together how early galaxies formed, and to inch closer to one of astronomy's holy grail discoveries: the very earliest stars.

The researchers used Webb's instruments to look at the light coming from the GS-NDG-9422 galaxy across different wavelengths, called a spectrum, and made some puzzling findings.

Read more