Skip to main content

Engineers for James Webb have stacked its 18 images into one

The work to get the James Webb Space Telescope ready to collect science data is still underway so that the telescope will be ready to share its first beautiful image of space this summer. The long and delicate process of aligning the telescope’s primary and secondary mirrors continues, but recently engineers reached an important milestone when they completed the image stacking step.

Last week, engineers shared an image array showing 18 points of light. These were actually 18 images of the same star, bright star HD 84406 being used for the alignment process, which represent the 18 segments that make up the primary mirror. Each segment reflected the star, and the overall shape corresponded to the overall hexagonal shape of the mirror. The next step, called segment alignment, was to make small adjustments to each of the mirror segments and also adjust the secondary mirror so that the 18 points of light were sharper. NASA engineers shared the new image in a blog post this week.

A hexagonal image array captured by the NIRCam instrument shows the progress made during the Segment Alignment phase.
This hexagonal image array captured by the NIRCam instrument shows the progress made during the Segment Alignment phase, further aligning Webb’s 18 primary mirror segments and secondary mirror using precise movements commanded from the ground. NASA/STScI

Once that was done, the team could move on to the process of image stacking, in which the 18 points were layered on top of each other to produce one single point of light. This step means that the mirror is now operating as one large mirror rather than 18 small mirrors, but it doesn’t mean that adjustments are complete. The team still needs to make small adjustments in a phase called coarse phasing, in which different pairs of segments will be matched up to correct for tiny differences between the segments such as variations in their heights.

Individual segment images are moved so they fall precisely at the center of the field to produce one unified image instead of 18.
During this phase of alignment known as Image Stacking, individual segment images are moved so they fall precisely at the center of the field to produce one unified image instead of 18. In this image, all 18 segments are on top of each other. After future alignment steps, the image will be even sharper. NASA/STScI

“We still have work to do, but we are increasingly pleased with the results we’re seeing,” said Lee Feinberg, optical telescope element manager for Webb at NASA’s Goddard Space Flight Center, in the blog post. “Years of planning and testing are paying dividends, and the team could not be more excited to see what the next few weeks and months bring.”

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
‘That’s weird’: This galaxy could help astronomers understand the earliest stars
The newly-discovered GS-NDG-9422 galaxy appears as a faint blur in this James Webb Space Telescope NIRCam (Near-Infrared Camera) image. It could help astronomers better understand galaxy evolution in the early Universe.

Astronomers using the James Webb Space Telescope have spotted a weird galaxy that originated just a billion years after the Big Bang. Its strange properties are helping researchers to piece together how early galaxies formed, and to inch closer to one of astronomy's holy grail discoveries: the very earliest stars.

The researchers used Webb's instruments to look at the light coming from the GS-NDG-9422 galaxy across different wavelengths, called a spectrum, and made some puzzling findings.

Read more
See SpaceX’s Starship rocket get stacked ahead of its fifth test flight
spacex starship stacked fifth flight gycd3lob0aqhpe

SpaceX has shared images of it Starship rocket stacked and ready for a launch on its fifth flight test. The launch was originally aimed for July of this year, but was pushed back by several months due to licensing issues with the Federal Aviation Administration (FAA).

SpaceX announced that the Starship was stacked -- meaning that the Starship spacecraft has been placed atop the Super Heavy Booster -- in a post this week, which was shared along with the images. "Starship stacked for Flight 5 and ready for launch, pending regulatory approval," the company wrote on X.

Read more
James Webb image shows two galaxies in the process of colliding
This composite image of Arp 107, created with data from the James Webb Space Telescope’s NIRCam (Near-InfraRed Camera) and MIRI (Mid-InfraRed Instrument), reveals a wealth of information about the star formation taking place in these two galaxies and how they collided hundreds of million years ago. The near-infrared data, shown in white, show older stars, which shine brightly in both galaxies, as well as the tenuous gas bridge that runs between them. The vibrant background galaxies are also brightly illuminated at these wavelengths.

A new image from the James Webb Space Telescope shows one of the universe's most dramatic events: the colliding of two galaxies. The pair, known as Arp 107, are located located 465 million light-years away and have been pulled into strange shapes by the gravitational forces of the interaction, but this isn't a purely destructive process. The collision is also creating new stars as young stars are born in swirling clouds of dust and gas.

The image above is a composite, bringing together data from Webb's NIRCam (Near-InfraRed Camera) and MIRI (Mid-InfraRed Instrument). These two instruments operate in different parts of the infrared, so they can pick up on different processes. The data collected in the near-infrared range is seen in white, highlighting older stars and the band of gas running between the two galaxies. The mid-infrared data is shown in orange and red, highlighting busy regions of star formation, with bright young stars putting out large amounts of radiation.

Read more