Skip to main content

James Webb discovers the most distant galaxy ever observed

JADES (NIRCam Image with Pullout). The NIRCam data was used to determine which galaxies to study further with spectroscopic observations. One such galaxy, JADES-GS-z14-0 (shown in the pullout), was determined to be at a redshift of 14.32 (+0.08/-0.20), making it the current record-holder for the most distant known galaxy. This corresponds to a time less than 300 million years after the big bang.
JADES (NIRCam Image with Pullout). The NIRCam data was used to determine which galaxies to study further with spectroscopic observations. One such galaxy, JADES-GS-z14-0 (shown in the pullout), was determined to be at a redshift of 14.32 (+0.08/-0.20), making it the current record-holder for the most distant known galaxy. This corresponds to a time less than 300 million years after the big bang. Credit: NASA, ESA, CSA, STScI, B. Robertson (UC Santa Cruz), B. Johnson (CfA), S. Tacchella (Cambridge), P. Cargile (CfA). NASA

Researchers using the James Webb Space Telescope have discovered the most distant known galaxy to date, one that is so far away that it existed just a few hundred million years after the Big Bang. Since Webb began its science operations in 2022, astronomers have used it to look for very distant, very ancient galaxies and have been surprised by what they found. Not only have they found many of these distant galaxies, but the galaxies are also brighter and more massive than they expected — suggesting that galaxies evolved into large sizes faster than anyone imagined.

The newly discovered galaxy, called JADES-GS-z14-0, is named after the JWST Advanced Deep Extragalactic Survey (JADES) program and has a redshift of over 14. Redshift is a phenomenon in which light that is coming from a very distant object is pushed toward the red end of the spectrum due to the expansion of the universe, so the further away something is, the more red its light appears. For the very early galaxies observed by Webb, their light has been shifted so far to the red end of the spectrum that it no longer appears as visible light, but instead as infrared. Webb’s infrared instruments (unlike, say, the primarily visible light instruments used by telescopes like Hubble) are perfect for detecting these extremely distant galaxies.

Recommended Videos

And because light takes time to travel great distances, finding very distant galaxies is like looking back into the past, as these galaxies appear as they were when the universe was still very young.

Please enable Javascript to view this content

In the case of JADES-GS-z14-0, scientists were surprised to see such a bright galaxy at this early stage of the universe. “The size of the galaxy clearly proves that most of the light is being produced by large numbers of young stars,” explained researcher Daniel Eisenstein from the Center for Astrophysics | Harvard & Smithsonian in a statement, “rather than material falling onto a supermassive black hole in the galaxy’s center, which would appear much smaller.”

This brightness suggests that big, bright galaxies could form in this early period, contrary to what was commonly believed before the launch of Webb. “JADES-GS-z14-0 now becomes the archetype of this phenomenon,” said researcher Stefano Carniani of the Scuola Normale Superiore in Pisa, Italy. “It is stunning that the universe can make such a galaxy in only 300 million years.”

New data like the discovery of this galaxy is changing the way that astronomers think about the evolution of galaxies in the early universe. “This amazing object shows that galaxy formation in the early universe is very rapid and intense,” said Ben Johnson of the Center for Astrophysics, “and JWST will allow us to find more of these galaxies, perhaps when the universe was even younger. It is a marvelous opportunity to study how galaxies get started.”

The research will be published in three upcoming papers.

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
James Webb trains its sights on the Extreme Outer Galaxy
The NASA/ESA/CSA James Webb Space Telescope has observed the very outskirts of our Milky Way galaxy. Known as the Extreme Outer Galaxy, this region is located more than 58 000 light-years from the Galactic centre.

A gorgeous new image from the James Webb Space Telescope shows a bustling region of star formation at the distant edge of the Milky Way. Called, dramatically enough, the Extreme Outer Galaxy, this region is located 58,000 light-years away from the center of the galaxy, which is more than twice the distance from the center than Earth is.

Scientists were able to use Webb's NIRCam (Near-Infrared Camera) and MIRI (Mid-Infrared Instrument) instruments to capture the region in sparkling detail, showing molecular clouds called Digel Clouds 1 and 2 containing clumps of hydrogen, which enables the formation of new stars.

Read more
James Webb spots another pair of galaxies forming a question mark
The galaxy cluster MACS-J0417.5-1154 is so massive it is warping the fabric of space-time and distorting the appearance of galaxies behind it, an effect known as gravitational lensing. This natural phenomenon magnifies distant galaxies and can also make them appear in an image multiple times, as NASA’s James Webb Space Telescope saw here.

The internet had a lot of fun last year when eagle-eyed viewers spotted a galaxy that looked like a question mark in an image from the James Webb Space Telescope. Now, Webb has stumbled across another questioning galaxy, and the reasons for its unusual shape reveal an important fact about how the telescope looks at some of the most distant galaxies ever observed.

The new question mark-shaped galaxy is part of an image of galaxy cluster MACS-J0417.5-1154, which is so massive that it distorts space-time. Extremely massive objects -- in this case, a cluster of many galaxies -- exert so much gravitational force that they bend space, so the light traveling past these objects is stretched. It's similar using a magnifying glass. In some cases, this effect, called gravitational lensing, can even make the same galaxy appear multiple times in different places within one image.

Read more
James Webb is explaining the puzzle of some of the earliest galaxies
This image shows a small portion of the field observed by NASA’s James Webb Space Telescope’s NIRCam (Near-Infrared Camera) for the Cosmic Evolution Early Release Science (CEERS) survey. It is filled with galaxies. The light from some of them has traveled for over 13 billion years to reach the telescope.

From practically the moment it was turned on, the James Webb Space Telescope has been shaking cosmology. In some of its very earliest observations, the telescope was able to look back at some of the earliest galaxies ever observed, and it found something odd: These galaxies were much brighter than anyone had predicted. Even when the telescope's instruments were carefully calibrated over the few weeks after beginning operations, the discrepancy remained. It seemed like the early universe was a much busier, brighter place than expected, and no one knew why.

This wasn't a minor issue. The fact early galaxies appeared to be bigger or brighter than model predicted meant that something was off about the way we understood the early universe. The findings were even considered "universe breaking." Now, though, new research suggests that the universe isn't broken -- it's just that there were early black holes playing tricks.

Read more