Skip to main content

Stunning images of nearby galaxies from the VLT Survey Telescope

Image of the irregular dwarf galaxy Sextans A, located at a distance of about 4 million light years from us, towards the edge of the Local Group, captured by the VST (VLT Survey Telescope), an Italian telescope managed by the Italian National Institute for Astrophysics (INAF) at ESO’s Paranal Observatory, Chile.
Image of the irregular dwarf galaxy Sextans A, located at a distance of about 4 million light years from us, towards the edge of the Local Group, captured by the VST (VLT Survey Telescope), an Italian telescope managed by the Italian National Institute for Astrophysics (INAF) at ESO’s Paranal Observatory, Chile. INAF/VST-SMASH/C. Tortora et al. (2024)

A gorgeous new set of images shows the striking sight of nearby galaxies, captured by a telescope called the VLT Survey Telescope (VST), located at the European Southern Observatory (ESO)’s Paranal Observatory in Chile. Some of these galaxies are well-known, like the famous Sextans A, which is a small dwarf galaxy with an unusual square shape that is located just 4 million light years away.

Sextans A, shown above, is just a fraction of the size of our Milky Way galaxy at only 5,000 light years across and has been shaped by epic supernova events as stars come to the end of their lives and explode, pushing the material of the galaxy into its odd configuration.

Image of the irregular galaxy NGC 3109, located at a distance of about 4 million light years from us, towards the edge of the Local Group, captured by the VST (VLT Survey Telescope), an Italian telescope managed by the Italian National Institute for Astrophysics (INAF) at ESO’s Paranal Observatory, Chile.
Image of the irregular galaxy NGC 3109, located at a distance of about 4 million light years from us, toward the edge of the Local Group, captured by the VST (VLT Survey Telescope), an Italian telescope managed by the Italian National Institute for Astrophysics (INAF) at ESO’s Paranal Observatory in Chile. INAF/VST-SMASH/C. Tortora et al. (2024)

It was studied along with other galaxies like the nearby NGC 3109, shown above, to learn how galaxies form, as part of a project called The VLT Survey Telescope Survey of Mass Assembly and Structural Hierarchy (VST-SMASH). In total, the project covered 27 galaxies.

Recommended Videos

“We strive to understand how galaxies are formed as a function of their mass and morphology. This means asking ourselves how stars are formed in situ, within galaxies, but also how they are accreted (ex situ) during merger processes with other galaxies,” explained lead researcher Crescenzo Tortora of the Italian National Institute for Astrophysics. “In order to do so, we need to trace the colors of these galaxies up to their outskirts to investigate the presence of faint structures belonging to these galaxies and of faint galaxies orbiting around them. This is useful to uncover leftovers from galactic interactions, constraining the hierarchical process of cosmic structure formation.”

Image of the spiral galaxy IC 5332, located at a distance of about 30 million light years from us, captured by the VST (VLT Survey Telescope), an Italian telescope managed by the Italian National Institute for Astrophysics (INAF) at ESO’s Paranal Observatory, Chile.
Image of the spiral galaxy IC 5332, located at a distance of about 30 million light years from us, captured by the VST (VLT Survey Telescope), an Italian telescope managed by the Italian National Institute for Astrophysics (INAF) at ESO’s Paranal Observatory in Chile. INAF/VST-SMASH/C. Tortora et al. (2024)

Other galaxies studied in the project include the spiral galaxy IC 5332, located 30 million light years away, the irregular galaxy NGC 5253, located 11 million light years away, and NGC 5236, also known as the Southern Pinwheel, located 15 million light years away. The Southern Pinwheel is a particularly striking barred spiral galaxy that is one of the closest and brightest in the sky — so close that you don’t even need a telescope to see it, as it can be observed using binoculars.

Image of the spiral galaxy known as Southern Pinwheel (also referred to as NGC 5236 or M 83), located at a distance of about 15 million light years from us, captured by the VST (VLT Survey Telescope), an Italian telescope managed by the Italian National Institute for Astrophysics (INAF) at ESO’s Paranal Observatory, Chile.
Image of the spiral galaxy known as Southern Pinwheel (also referred to as NGC 5236 or M 83), located at a distance of about 15 million light years from us, captured by the VST (VLT Survey Telescope), an Italian telescope managed by the Italian National Institute for Astrophysics (INAF) at ESO’s Paranal Observatory in Chile. INAF/VST-SMASH/C. Tortora et al. (2024)

“This is the first time that all these galaxies are observed in such a deep and detailed fashion and with homogeneous data,” Tortora said. “In coming years, only Euclid will reach comparable depth in the optical domain, but without the same wide spectral range at the VST optical wavelengths. The Vera Rubin Observatory, instead, while observing in similar spectral regions to ours, will reach similar depths only after many years of observations. This makes the VST an instrument that can still make a difference, making us hope for interesting results as part of our survey.”

Image of the irregular galaxy NGC 5253, located at a distance of about 11 million light years from us, captured by the VST (VLT Survey Telescope), an Italian telescope managed by the Italian National Institute for Astrophysics (INAF) at ESO’s Paranal Observatory, Chile.
Image of the irregular galaxy NGC 5253, located at a distance of about 11 million light years from us, captured by the VST (VLT Survey Telescope), an Italian telescope managed by the Italian National Institute for Astrophysics (INAF) at ESO’s Paranal Observatory, Chile. INAF/VST-SMASH/C. Tortora et al. (2024)

Further information is published in the ESO magazine The Messenger .

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
See the stunning sights of the Euclid telescope’s 208-gigapixel cosmic atlas
This image shows an area of the mosaic released by ESA’s Euclid space telescope on 15 October 2024. The area is zoomed in 150 times compared to the large mosaic. On the left of the image, Euclid captured two galaxies (called ESO 364-G035 and G036) interacting with each other, 420 million light-years from us. On the right of the image, galaxy cluster Abell 3381 is visible, 678 million light-years away from us.

When the European Space Agency (ESA)'s Euclid telescope launched last year, it was promised to survey a huge chunk of the sky to help understand the mysteries of dark matter. Now, having overcome some icy challenges in its first year of operation, the ESA has released a first look at the great cosmic atlas that Euclid is building.

Built from 260 observations taken over just two weeks in March and April this year, the first chunk of the map is an enormous mosaic of 208 gigapixels. A video zooming in to areas of the mosaic shows just how detailed the images are of the Southern Sky that covers 14 million distant galaxies, plus tens of millions of stars within our own Milky Way:

Read more
See the wonders of the Milky Way in this new infrared map
The Lobster Nebula seen with ESO’s VISTA telescope.

The wonders of our galaxy are on full display in a new infrared map of the Milky Way, showing a stunning 1.5 billion objects using data collected over 13 years. Researchers used the European Southern Observatory (ESO)’s VISTA telescope to collect 500 terabytes of data, showing the nebulae, globular clusters, stars, planets, brown dwarfs, and other objects that make up our galaxy.

The VISTA telescope (Visible and Infrared Survey Telescope for Astronomy), located on the Paranal Observatory in Chile, has an infrared instrument called VIRCAM that is able to look through clouds of dust and gas to observe objects that would be invisible in the visible light wavelength. Since 2010, researchers have been using this instrument to observe the Milky Way. They observed each patch of the sky multiple times, so they could see not only the location of particular objects but also how they were moving over time.

Read more
‘That’s weird’: This galaxy could help astronomers understand the earliest stars
The newly-discovered GS-NDG-9422 galaxy appears as a faint blur in this James Webb Space Telescope NIRCam (Near-Infrared Camera) image. It could help astronomers better understand galaxy evolution in the early Universe.

Astronomers using the James Webb Space Telescope have spotted a weird galaxy that originated just a billion years after the Big Bang. Its strange properties are helping researchers to piece together how early galaxies formed, and to inch closer to one of astronomy's holy grail discoveries: the very earliest stars.

The researchers used Webb's instruments to look at the light coming from the GS-NDG-9422 galaxy across different wavelengths, called a spectrum, and made some puzzling findings.

Read more