Skip to main content

Water could have been on Mars more recently than we thought

One of the biggest topics in Mars research right now is understanding the history of water on the planet. Scientists know that there was once abundant liquid water on its surface, though now all that water has disappeared and the planet is arid. The only remaining water on Mars’s surface today is in the form of water ice near its poles or in deep canyons. To understand what happened to all the water which was present billions of years ago, researchers are trying to piece together a geological history of the planet.

Most researchers thought that the water on Mars evaporated around 3 billion years ago, but new research is questioning this figure. Recent data from NASA’s Mars Reconnaissance Orbiter (MRO) suggests that there could have been water on Mars as recently as 2 billion years ago, meaning we may have to re-configure our understanding of the planet’s history.

NASA’s Mars Reconnaissance Orbiter used its Context Camera to capture this image of Bosporos Planum, a location on Mars. The white specks are salt deposits found within a dry channel. The largest impact crater in the scene is nearly 1 mile (1.5 kilometers) across.
NASA’s Mars Reconnaissance Orbiter used its Context Camera to capture this image of Bosporos Planum, a location on Mars. The white specks are salt deposits found within a dry channel. The largest impact crater in the scene is nearly 1 mile (1.5 kilometers) across. NASA/JPL-Caltech/MSSS

The researchers used data from the MRO to look at salt deposits that were left behind when water evaporated. They looked for these deposits in areas with impact craters caused by asteroid impacts, which can be used for dating as more craters generally mean older terrain. By combining information about the number of craters and the extent of salt deposits, they could estimate the date of water evaporation.

Recommended Videos

“What is amazing is that after more than a decade of providing high-resolution image, stereo, and infrared data, MRO has driven new discoveries about the nature and timing of these river-connected ancient salt ponds,” said Bethany Ehlmann, deputy principal investigator for MRO’s Compact Reconnaissance Imaging Spectrometer for Mars instrument, in a statement.

Please enable Javascript to view this content

MRO has been capturing high-resolution images of the Mars surface since it arrived at the planet in 2006, and it continues to provide more data to help understand the planet.

“Part of the value of MRO is that our view of the planet keeps getting more detailed over time,” said Leslie Tamppari, the mission’s deputy project scientist at JPL. “The more of the planet we map with our instruments, the better we can understand its history.”

The research is published in the journal AGU Advances.

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
30,000 near-Earth asteroids have been discovered — and the search is on for more
Artist's impression of asteroid 21 Lutetia.

With NASA's DART mission recently succeeding in deflecting an asteroid from its course, you might think our planet is sorted when it comes to defense against incoming asteroids. But there are a whole lot of asteroids out there, and looking for potentially dangerous asteroids is an ongoing job.

According to the European Space Agency (ESA), there are now more than 30,000 known near-Earth asteroids in our solar system. A near-Earth asteroid is defined as one that comes close to the Earth at some point in its orbit, as many asteroids have highly elliptical orbits that bring them closer to the sun at some times than at others. Astronomers use a measurement called an Astronomical Unit (AU), which is the distance between the sun and the Earth, and near-Earth asteroids are those that come within 1.3 AU of the sun.

Read more
Groundbreaking low-cost Indian Mars mission comes to an end
mars orbiter mission over roundup mangalyaan 2

Nearly a decade after its launch in 2013, India's Mars Orbiter Mission has run out of fuel and will cease operations. The mission, which was the first Mars mission by an Asian country, demonstrated a different approach to planetary science by being built and launched on a much smaller budget than is typical for Mars missions from larger space agencies like NASA or the European Space Agency.

In an update shared this week, the Indian Space Research Organisation (ISRO) hailed the achievements of the mission, writing that, "despite being designed for a life-span of six months as a technology demonstrator, the Mars Orbiter Mission has lived for about eight years in the Martian orbit with a gamut of significant scientific results on Mars as well as on the Solar corona, before losing communication with the ground station, as a result of a long eclipse in April 2022."

Read more
Perseverance rover finds conditions where life could have thrived on Mars
NASA’s Perseverance rover puts its robotic arm to work around a rocky outcrop called “Skinner Ridge” in Mars’ Jezero Crater. Composed of multiple images, this mosaic shows layered sedimentary rocks in the face of a cliff in the delta, as well as one of the locations where the rover abraded a circular patch to analyze a rock’s composition.

The Perseverance rover has made an exciting discovery on Mars, identifying the building blocks of life in a sample from an area of the Jezero crater where there was once plentiful liquid water. The organic molecules it discovered can be formed in various ways including non-organic processes, so they aren't proof that life once existed there -- but they do show that life could potentially have thrived there millions of years ago.

NASA’s Perseverance rover puts its robotic arm to work around a rocky outcrop called “Skinner Ridge” in Mars’ Jezero Crater. Composed of multiple images, this mosaic shows layered sedimentary rocks in the face of a cliff in the delta, as well as one of the locations where the rover abraded a circular patch to analyze a rock’s composition. NASA/JPL-Caltech/ASU/MSSS

Read more