Skip to main content

James Webb dives into the heart of the Milky Way to study star formation

An image of the Milky Way captured by the MeerKAT radio telescope array puts the James Webb Space Telescope’s image of the Sagittarius C region in context. The MeerKAT image spans 1,000 light-years, while the Webb image covers 44 light-years.
An image of the Milky Way captured by the MeerKAT radio telescope array puts the James Webb Space Telescope’s image of the Sagittarius C region in context. The MeerKAT image spans 1,000 light-years, while the Webb image covers 44 light-years. NASA, ESA, CSA, STScI, SARAO, Samuel Crowe (UVA), John Bally (CU), Ruben Fedriani (IAA-CSIC), Ian Heywood (Oxford)

Deep in the heart of the Milky Way lies a bustling region near to the galaxy’s supermassive black hole, where stars are born. But something strange is happening there: the rate of star formation is lower than it seems like it should be. With thick clouds of dust and gas, the Sagittarius C region should be bursting with new baby stars, but instead there are relatively few new stars formed there. And now, research using the James Webb Space Telescope is revealing why.

Webb first observed the region called Sagittarius C in 2023. Now researchers are now using those observations to study star formation in the wider area around the center of the Milky Way, known as the Central Molecular Zone.

Recommended Videos

“A big question in the Central Molecular Zone of our galaxy has been, if there is so much dense gas and cosmic dust here, and we know that stars form in such clouds, why are so few stars born here?” said researcher John Bally of the University of Colorado Boulder. “Now, for the first time, we are seeing directly that strong magnetic fields may play an important role in suppressing star formation, even at small scales.”

The forces at play in the region are captured in the image above, which uses data from a radio telescope called MeerKAT and shows filaments of hot gas that are shaped by magnetic fields. In the image, you can see the supermassive black hole known as Sagittarius A* as the bright yellow blob at the very center. This enormous monster with a mass four million times that of the sun feeds on dust and gas which swirl around it, and as the material swirls it heats up due to friction and glows — making it visible even though the black hole itself swallows all light.

All of this mass creates magnetic fields which are amplified by the movements of gas swirling around the black hole, and these fields are shaping the gas in the region and preventing it from spreading out. The reason that few stars are being born seems to be that the magnetic fields act against the gravitational forces which collapse clouds of dust and gas to form new stars.

“We were definitely not expecting those filaments,” said fellow researcher Rubén Fedriani of the Instituto de Astrofísica de Andalucía in Spain. “It was a completely serendipitous discovery.”

The research is published in The Astrophysical Journal.

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
Gorgeous James Webb Space Telescope images land on new U.S. stamps
A new USPS stamp featuring an image taken by the James Webb Space Telescope.

In a mark of its huge impact on the world of science and astronomy, NASA’s James Webb Space Telescope finds itself once again as the inspiration for a new set of stamps from the United States Postal Service (USPS).

Two new stamps issued this month feature iconic images captured by Webb, one of them showing a spiral galaxy called NGC 628. “Webb’s observations combine near- and mid-infrared light to reveal glowing gas and dust in stark shades of orange and red, as well as finer spiral shapes with the appearance of jagged edges,” NASA said of the image (below), adding that the galaxy is located 32 million light-years away in the Pisces constellation.

Read more
James Webb spots ancient Spiderweb cluster that’s 10 billion years old
This image shows the Spiderweb protocluster as seen by Webb’s NIRCam (Near-InfraRed Camera).

A new image from the James Webb Space Telescope shows thousands of glittering galaxies that it spied by peering through clouds of dust and using its infrared instruments to reveal what lies beneath. In the center of the image is the Spiderweb protocluster, which is a group of galaxies in the early stages of forming a "cosmic city."

The light from the Spiderweb has been traveling for an astonishing 10 billion years to reach us, so looking at it is like looking back in time to the early stages of the universe. Astronomers are interested in studying this cluster of over 100 galaxies interacting together because it shows how galaxies clumped together to form groups when the universe was still young.

Read more
Stunning view of the Sombrero Galaxy captured by James Webb
The NASA/ESA/CSA James Webb Space Telescope recently imaged the Sombrero galaxy with its MIRI (Mid-Infrared Instrument), resolving the clumpy nature of the dust along the galaxy’s outer ring. The mid-infrared light highlights the gas and dust that are part of star formation taking place among the Sombrero galaxy’s outer disk. The rings of the Sombrero galaxy produce less than one solar mass of stars per year, in comparison to the Milky Way’s roughly two solar masses a year. It’s not a particular hotbed of star formation. The Sombrero galaxy is around 30 million light-years from Earth in the constellation Virgo.

A new image from the James Webb Space Telescope shows a stunning and fashionable sight: the Sombrero Galaxy, named for its resemblance to the traditional Mexican hat. With its wide, flat shape reminiscent of the hat's wide brim, the galaxy, also known as Messier 104, has outer rings that are clearly visible for the first time.

The Sombrero Galaxy is located 30 million light-years away, in the constellation of Virgo, and it has been previously imaged by the Hubble Space Telescope. But while in the Hubble image, the galaxy appears as an opaque, pale disk, in the new Webb image you can see an outer blue disk, with a small bright core right at the center.

Read more