Skip to main content

James Webb spots huge plumes of water from Saturn’s moon Enceladus

One of the prime places that scientists are interested in looking for life in our solar system is Saturn’s icy moon Enceladus. The moon has an ocean of liquid water beneath a thick, icy crust that could potentially support life. Interest in this subsurface ocean was heightened when the Cassini mission was studying Enceladus in the 2000s and flew through plumes of water spraying from the surface,

Now, the James Webb Space Telescope has been used to observe these plumes all the way from Earth, helping scientists to learn about the water system on this moon. The plumes come from Enceladus’s south pole, and Webb was able to spot them even though the entire moon is just over 300 miles across. Despite that small size, the plume Webb observed spanned more than 6,000 miles.

Saturn’s geologically active moon, Enceladus. NASA/JPL

“When I was looking at the data, at first, I was thinking I had to be wrong. It was just so shocking to detect a water plume more than 20 times the size of the moon,” said lead author of the research, Geronimo Villanueva of NASA’s Goddard Space Flight Center, in a statement. “The water plume extends far beyond its release region at the southern pole.”

Recommended Videos

As well as being long, the plume was also throwing up water at a fast rate, with vapor gushing away from the surface at a rate of  nearly 80 gallons per second — which, NASA points out, could fill an Olympic-sized swimming pool in a couple of hours.

Please enable Javascript to view this content

This amount of water is affecting the environment around Saturn, as the moon is leaving a trail of water as it orbits. “The orbit of Enceladus around Saturn is relatively quick, just 33 hours. As it whips around Saturn, the moon and its jets are basically spitting off water, leaving a halo, almost like a donut, in its wake,” said Villanueva. “In the Webb observations, not only was the plume huge, but there was just water absolutely everywhere.”

NASA’s James Webb Space Telescope’s exquisite sensitivity and highly specialised instruments are revealing details into how one of Saturn’s moon’s feeds the water supply for the entire system of the ringed planet. Enceladus, a prime candidate in the search for life elsewhere in our Solar System, is a small moon about four percent the size of Earth. New images from Webb’s NIRCam (Near-Infrared Camera) have revealed a water vapour plume jetting from the south pole of Enceladus, extending out 40 times the size of the moon itself. The Integral Field Unit (IFU) aboard the NIRSpec (Near-Infrared Spectrograph) instrument also provided insights into how the water from Enceladus feeds the rest of its surrounding environment.
NASA’s James Webb Space Telescope’s exquisite sensitivity and highly specialized instruments are revealing details into how one of Saturn’s moon’s feeds the water supply for the entire system of the ringed planet. NASA, ESA, CSA, STScI, L. Hustak (STScI), G. Villanueva (NASA’s Goddard Space Flight Center)

The researchers used Webb’s NIRCam (Near-Infrared Camera) instrument to take pictures of the plume, and also its NIRSpec (Near-Infrared Spectrograph) instrument to identify the water coming from and surrounding the moon.

“Right now, Webb provides a unique way to directly measure how water evolves and changes over time across Enceladus’ immense plume, and as we see here, we will even make new discoveries and learn more about the composition of the underlying ocean,” said co-author Stefanie Milam of NASA Goddard. “Because of Webb’s wavelength coverage and sensitivity, and what we’ve learned from previous missions, we have an entire new window of opportunity in front of us.”

The research is available as a pre-print and will soon be published in the journal Nature Astronomy.

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
James Webb spots another pair of galaxies forming a question mark
The galaxy cluster MACS-J0417.5-1154 is so massive it is warping the fabric of space-time and distorting the appearance of galaxies behind it, an effect known as gravitational lensing. This natural phenomenon magnifies distant galaxies and can also make them appear in an image multiple times, as NASA’s James Webb Space Telescope saw here.

The internet had a lot of fun last year when eagle-eyed viewers spotted a galaxy that looked like a question mark in an image from the James Webb Space Telescope. Now, Webb has stumbled across another questioning galaxy, and the reasons for its unusual shape reveal an important fact about how the telescope looks at some of the most distant galaxies ever observed.

The new question mark-shaped galaxy is part of an image of galaxy cluster MACS-J0417.5-1154, which is so massive that it distorts space-time. Extremely massive objects -- in this case, a cluster of many galaxies -- exert so much gravitational force that they bend space, so the light traveling past these objects is stretched. It's similar using a magnifying glass. In some cases, this effect, called gravitational lensing, can even make the same galaxy appear multiple times in different places within one image.

Read more
James Webb is explaining the puzzle of some of the earliest galaxies
This image shows a small portion of the field observed by NASA’s James Webb Space Telescope’s NIRCam (Near-Infrared Camera) for the Cosmic Evolution Early Release Science (CEERS) survey. It is filled with galaxies. The light from some of them has traveled for over 13 billion years to reach the telescope.

From practically the moment it was turned on, the James Webb Space Telescope has been shaking cosmology. In some of its very earliest observations, the telescope was able to look back at some of the earliest galaxies ever observed, and it found something odd: These galaxies were much brighter than anyone had predicted. Even when the telescope's instruments were carefully calibrated over the few weeks after beginning operations, the discrepancy remained. It seemed like the early universe was a much busier, brighter place than expected, and no one knew why.

This wasn't a minor issue. The fact early galaxies appeared to be bigger or brighter than model predicted meant that something was off about the way we understood the early universe. The findings were even considered "universe breaking." Now, though, new research suggests that the universe isn't broken -- it's just that there were early black holes playing tricks.

Read more
James Webb Telescope captures gorgeous galaxy with a hungry monster at its heart
Featured in this new image from the NASA/ESA/CSA James Webb Space Telescope is Messier 106, also known as NGC 4258. This is a nearby spiral galaxy that resides roughly 23 million light-years away in the constellation Canes Venatici, practically a neighbour by cosmic standards. Messier 106 is one of the brightest and nearest spiral galaxies to our own and two supernovae have been observed in this galaxy in 1981 and 2014.

A new image from the James Webb Space Telescope shows off a nearby galaxy called Messier 106 -- a spiral galaxy that is particularly bright. At just 23 million light-years away (that's relatively close by galactic standards), this galaxy is of particular interest to astronomers due to its bustling central region, called an active galactic nucleus.

The high level of activity in this central region is thought to be due to the monster that lurks at the galaxy's heart. Like most galaxies including our own, Messier 106 has an enormous black hole called a supermassive black hole at its center. However, the supermassive black hole in Messier 106 is particularly active, gobbling up material like dust and gas from the surrounding area. In fact, this black hole eats so much matter that as it spins, it warps the disk of gas around it, which creates streamers of gas flying out from this central region.

Read more