Skip to main content

James Webb Space Telescope successfully deploys its huge sunshield

The James Webb Space Telescope has successfully unfurled its massive sunshield, marking the completion of a major step in its deployment as the observatory moves toward full operations.

The most powerful space telescope ever built launched atop an Ariane 5 rocket on December 25. At the time of writing, Webb has traveled 575,000 miles and is 65% of the distance to its destination orbit, which it’s expected to reach toward the end of this month.

Recommended Videos

News of the sunshield’s successful deployment was shared by NASA early evening Pacific time on Tuesday, January 4. The crucial maneuver to unfurl the 47-foot-wide shield took several days to complete, with the last step involving a tensioning process that stretched each of its five layers into their final position.

Please enable Javascript to view this content

If anything had gone wrong with the sunshield’s deployment, it could have signaled the end of a $10 billion mission that’s been decades in the making.

The next big moment involves the opening up of the all-important primary mirror that will enable the observatory to peer into space so it can hopefully uncover some of the secrets of the universe during Webb’s multiyear mission.

The deployment process of the 18-segment, 21-foot-wide primary mirror will begin later this week, once the setup of the smaller secondary mirror has been confirmed.

The primary mirror deployment involves the locking into place of two sets of mirror segments around the main section.

A diagram of the James Webb Space Telescope.
A diagram showing the primary and secondary mirrors of the James Webb Space Telescope. NASA

The large size of both the primary mirror and the sunshield meant that the components had to be folded into a compact shape to fit inside the rocket fairing for launch.

It’s one of the most complicated space deployments ever attempted, though so far everything seems to be going to plan. Following the successful setup of the sunshield, the Webb team said that up to now “about 75%” of its 344 single-point failures have been handled without any issues.

Once the primary mirror is fully deployed, the Webb team will spend around five months aligning the telescope’s mirror and fine-tuning its onboard instruments.

Only then can the serious work of exploring deep space begin.

Trevor Mogg
Contributing Editor
Not so many moons ago, Trevor moved from one tea-loving island nation that drives on the left (Britain) to another (Japan)…
James Webb trains its sights on the Extreme Outer Galaxy
The NASA/ESA/CSA James Webb Space Telescope has observed the very outskirts of our Milky Way galaxy. Known as the Extreme Outer Galaxy, this region is located more than 58 000 light-years from the Galactic centre.

A gorgeous new image from the James Webb Space Telescope shows a bustling region of star formation at the distant edge of the Milky Way. Called, dramatically enough, the Extreme Outer Galaxy, this region is located 58,000 light-years away from the center of the galaxy, which is more than twice the distance from the center than Earth is.

Scientists were able to use Webb's NIRCam (Near-Infrared Camera) and MIRI (Mid-Infrared Instrument) instruments to capture the region in sparkling detail, showing molecular clouds called Digel Clouds 1 and 2 containing clumps of hydrogen, which enables the formation of new stars.

Read more
James Webb spots another pair of galaxies forming a question mark
The galaxy cluster MACS-J0417.5-1154 is so massive it is warping the fabric of space-time and distorting the appearance of galaxies behind it, an effect known as gravitational lensing. This natural phenomenon magnifies distant galaxies and can also make them appear in an image multiple times, as NASA’s James Webb Space Telescope saw here.

The internet had a lot of fun last year when eagle-eyed viewers spotted a galaxy that looked like a question mark in an image from the James Webb Space Telescope. Now, Webb has stumbled across another questioning galaxy, and the reasons for its unusual shape reveal an important fact about how the telescope looks at some of the most distant galaxies ever observed.

The new question mark-shaped galaxy is part of an image of galaxy cluster MACS-J0417.5-1154, which is so massive that it distorts space-time. Extremely massive objects -- in this case, a cluster of many galaxies -- exert so much gravitational force that they bend space, so the light traveling past these objects is stretched. It's similar using a magnifying glass. In some cases, this effect, called gravitational lensing, can even make the same galaxy appear multiple times in different places within one image.

Read more
James Webb is explaining the puzzle of some of the earliest galaxies
This image shows a small portion of the field observed by NASA’s James Webb Space Telescope’s NIRCam (Near-Infrared Camera) for the Cosmic Evolution Early Release Science (CEERS) survey. It is filled with galaxies. The light from some of them has traveled for over 13 billion years to reach the telescope.

From practically the moment it was turned on, the James Webb Space Telescope has been shaking cosmology. In some of its very earliest observations, the telescope was able to look back at some of the earliest galaxies ever observed, and it found something odd: These galaxies were much brighter than anyone had predicted. Even when the telescope's instruments were carefully calibrated over the few weeks after beginning operations, the discrepancy remained. It seemed like the early universe was a much busier, brighter place than expected, and no one knew why.

This wasn't a minor issue. The fact early galaxies appeared to be bigger or brighter than model predicted meant that something was off about the way we understood the early universe. The findings were even considered "universe breaking." Now, though, new research suggests that the universe isn't broken -- it's just that there were early black holes playing tricks.

Read more