Skip to main content

‘That’s weird’: This galaxy could help astronomers understand the earliest stars

The newly-discovered GS-NDG-9422 galaxy appears as a faint blur in this James Webb Space Telescope NIRCam (Near-Infrared Camera) image. It could help astronomers better understand galaxy evolution in the early Universe.
The newly-discovered GS-NDG-9422 galaxy appears as a faint blur in this James Webb Space Telescope NIRCam (Near-Infrared Camera) image. It could help astronomers better understand galaxy evolution in the early Universe. NASA, ESA, CSA, STScI, Alex Cameron (Oxford)

Astronomers using the James Webb Space Telescope have spotted a weird galaxy that originated just a billion years after the Big Bang. Its strange properties are helping researchers to piece together how early galaxies formed, and to inch closer to one of astronomy’s holy grail discoveries: the very earliest stars.

The researchers used Webb’s instruments to look at the light coming from the GS-NDG-9422 galaxy across different wavelengths, called a spectrum, and made some puzzling findings.

Recommended Videos

“My first thought in looking at the galaxy’s spectrum was, ‘that’s weird,’ which is exactly what the Webb telescope was designed to reveal: totally new phenomena in the early universe that will help us understand how the cosmic story began,” said lead researcher Alex Cameron of the University of Oxford in a statement.

Please enable Javascript to view this content

The light coming from this galaxy suggested that its gas was actually shining more brightly than its stars, which must be caused by the stars being extremely hot and warming up the gas. While large, hot stars typically have temperatures of 40,000 to 50,000 degrees Celsius, the stars seen in this galaxy were calculated to be over 80,000 degrees Celsius.

This is already an interesting finding, but what makes it particularly special is that it could help uncover some of the earliest stars thought to exist, called Population III stars. Star populations are numbered backwards, so the stars we see born today are Population I, and older stars are Population II. Scientists have long predicted the existence of an even older group of stars called Population III, which were those that existed in the earliest stages of the universe, but they have not yet found direct evidence of them.

These Population III stars would have almost no heavy elements in them, because these heavier elements had not yet been created by supernovae. So they would be quite different from the stars that we see today.

“We know that this galaxy does not have Population III stars, because the Webb data shows too much chemical complexity. However, its stars are different from what we are familiar with – the exotic stars in this galaxy could be a guide for understanding how galaxies transitioned from primordial stars to the types of galaxies we already know,” said fellow researcher Harley Katz.

The researchers are now looking for more of these weird galaxies to learn more about how stars were forming in the first 1 billion years after the Big Bang.

“It’s a very exciting time, to be able to use the Webb telescope to explore this time in the universe that was once inaccessible,” Cameron said. “We are just at the beginning of new discoveries and understanding.”

The research is published in the journal Monthly Notices of the Royal Astronomical Society.

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
James Webb discovers a new type of exoplanet: an exotic ‘steam world’
An artist’s conception of the “steam world” GJ 9827 d, shown in the foreground in blue.

Our solar system has a wide variety of planet types, from tiny rocky Mercury to huge puffy gas giant Jupiter to distant ice giant Uranus. But beyond our own system, there are even more types of exoplanet out there, including water worlds covered in ocean and where life could potentially thrive. Now, researchers using the James Webb Space Telescope have identified a new and exotic type of planet called a steam world, which has an atmosphere almost entirely composed of water vapor.

The planet, called GJ 9827 d, was examined by the Hubble Space Telescope earlier this year and had researchers so intrigued that they wanted to go back for a closer look using Webb. They found that the planet, which is around twice the size of Earth, had a very different atmosphere from the typical hydrogen and helium that is usually seen. Instead, it was full of hot steam.

Read more
James Webb image shows two galaxies in the process of colliding
This composite image of Arp 107, created with data from the James Webb Space Telescope’s NIRCam (Near-InfraRed Camera) and MIRI (Mid-InfraRed Instrument), reveals a wealth of information about the star formation taking place in these two galaxies and how they collided hundreds of million years ago. The near-infrared data, shown in white, show older stars, which shine brightly in both galaxies, as well as the tenuous gas bridge that runs between them. The vibrant background galaxies are also brightly illuminated at these wavelengths.

A new image from the James Webb Space Telescope shows one of the universe's most dramatic events: the colliding of two galaxies. The pair, known as Arp 107, are located located 465 million light-years away and have been pulled into strange shapes by the gravitational forces of the interaction, but this isn't a purely destructive process. The collision is also creating new stars as young stars are born in swirling clouds of dust and gas.

The image above is a composite, bringing together data from Webb's NIRCam (Near-InfraRed Camera) and MIRI (Mid-InfraRed Instrument). These two instruments operate in different parts of the infrared, so they can pick up on different processes. The data collected in the near-infrared range is seen in white, highlighting older stars and the band of gas running between the two galaxies. The mid-infrared data is shown in orange and red, highlighting busy regions of star formation, with bright young stars putting out large amounts of radiation.

Read more
James Webb trains its sights on the Extreme Outer Galaxy
The NASA/ESA/CSA James Webb Space Telescope has observed the very outskirts of our Milky Way galaxy. Known as the Extreme Outer Galaxy, this region is located more than 58 000 light-years from the Galactic centre.

A gorgeous new image from the James Webb Space Telescope shows a bustling region of star formation at the distant edge of the Milky Way. Called, dramatically enough, the Extreme Outer Galaxy, this region is located 58,000 light-years away from the center of the galaxy, which is more than twice the distance from the center than Earth is.

Scientists were able to use Webb's NIRCam (Near-Infrared Camera) and MIRI (Mid-Infrared Instrument) instruments to capture the region in sparkling detail, showing molecular clouds called Digel Clouds 1 and 2 containing clumps of hydrogen, which enables the formation of new stars.

Read more